Chứng minh rằng với mọi số tự nhiên n thì 2n+3 và 8n+10 nguyên tố cùng nhau
Chứng minh rằng với mọi số tự nhiên n thì 2n + 3 và 4n + 8 là nguyên tố cùng nhau.
Chứng minh rằng với mọi số tự nhiên n thì 2n+3 và 4n+8 là nguyên tố cùng nhau.
Gọi d = UCLN(2n+3,4n+8)
Suy ra 2n+3 ⋮ d và 4n+8 ⋮ d
Ta có 2n+3 ⋮ d => 2.(2n+3) ⋮ d => 4n+6 ⋮ d
Vì 4n+8 ⋮ d và 4n+6 ⋮ d nên (4n+8) – (4n+6) ⋮ d => 2 ⋮ d => d ∈ {1;2}
Vì 2n+3 là số lẻ nên d = 2 là không thỏa mãn. Vậy d = 1
Vậy với mọi số tự nhiên n thì 2n+3 và 4n+8 là nguyên tố cùng nhau
Chứng minh rằng với mọi số tự nhiên n thì các số sau nguyên tố cùng nhau:
a) 2 n + 3 v à 4 n + 8
b) 2 n + 5 v à 3 n + 7
c) 7 n + 10 v à 5 n + 7
chứng minh rằng với mọi số tự nhiên N thì 7N + 3 và 2N + 1 là nguyên tố cùng nhau
mk kí hiệu / là chia hết nhé!
Gọi d=ƯCLN(7n+3,2n+1)
Ta có:
7n+3/d=>14n+6/d
2n+1/d=>14n+7/d
=> 14n+7-14-6/d=>1/d=>d=1
Vậy: 7n+3 và 2n+1 ntcn (với mọi stn n)
a) chứng minh rằng khi nla số tự nhiên khác 0 thì n+1 là 2 số nguyên tố cùng nhau.
b)chứng minh rằng với mọi số tự nhiên n thì các số sau là nguyên tố cùng nhau :2n+3 va 4n+8
e có 2 chia hết cho d; 2n+3 lẻ nên (2n+3,4n+8)=1
còn n+1-n=1 nên (n,n+1)=1
Chứng minh rằng với mọi số tự nhiên thì 2n+3 và 2n+1 nguyên tố cùng nhau
Gọi ƯCLN(2n + 3; 2n + 1) = d
\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\2n+1⋮d\end{cases}}\)
=> 2n + 3 - (2n + 1) \(⋮\)d
=> 2n + 3 - 2n - 1 \(⋮\)d
=> 2 \(⋮\)d => d ∈ {1;2}
Do 2n + 1 lẻ => d lẻ => d = 1
Vậy ∀ x ∈ N thì 2n + 3 và 2n + 1 là 2 số nguyên tố cùng nhau
Chứng minh rằng với mọi số tự nhiên n thì hai số: 2n + 5 và 2n +12 là hai số nguyên tố cùng nhau.
chứng minh rằng với mọi số tự nhiên n thì hai số: 2n + 5 và 2n +12 là hai số nguyên tố cùng nhau.
Chứng minh rằng 6n+5 và 8n+6 là hai số nguyên tố cùng nhau với mọi số tự nhiên n.