Câu 1: Chứng minh:
a)72014 + 1 chia hết cho 50
b) (72012 + 65)2013 chia hết cho 12
Câu 1: Chứng minh:
a)72014 + 1 chia hết cho 50
b) (72012 + 65)2013 chia hết cho 12
Câu 2: Tìm số dư phép chia:
a) (330 +31)32 chia cho 14
b) (82012 +26)2013 chia cho 21
Chứng minh: (72012 + 65)2013 chia hết cho 12
Câu 1: Chứng tỏ rằng
a) (ab -ba) chia hết cho 9 ( với a> b )
b) Nếu ( ab+ cd) chia hết cho 11 thì abcd chia hết cho 11
Câu 2: Chứng tỏ rằng với mọi số tự nhiên n ta đều có
( n + 2012 2013) ( n+ 20131012) chia hết cho 2
Câu 3 : Cho A=1+3+32 + 33 + .................+ 31999 + 32000 .chứng minh A chia hết cho 13
bai 1 ta co ab-ba=10a+b-10b-b=(10a-a)-(10b-b)=9a-9b=9.(a-b). vi 9.(a-b) chia het cho 9 suy ra (ab-ba) chia het cho 9 voi a>b (dpcm)
ban tran xuan quynh tra loi dung roi
bài 12 : cho n là số tự nhiên . chứng minh rằng
a) (n+2013)(n+2014) chia hết cho 2
b)n(n+1)(n+2) chia hết cho và chia hết cho3
c)n(n+1)(2n+1) chia hế cho 2 và cho 3
cho n là số tự nhiên,chứng minh:
a,5^2n+1 +2^n+4 +2^n+1 chia hết cho 23
b,2^2n+2 +24n +14 chia hết cho 18
a) Ta có:
(5^2n+1) + (2^n+4) + (2^n+1) = (25^n).5 - 5.(2^n) + (2^n).( 5 + 2^4 +2) = 5.( 25^n - 2^n ) + 23.2^n chia hết cho 23.
cho n là số tự nhiên,chứng minh:
a,5^2n+1 +2^n+4 +2^n+1 chia hết cho 23
b,2^2n+2 +24n +14 chia hết cho 18
cho n là số tự nhiên,chứng minh:
a,5^2n+1 +2^n+4 +2^n+1 chia hết cho 23
b,2^2n+2 +24n +14 chia hết cho 18
Lời giải:
a)
\(5^{2n+1}+2^{n+4}+2^{n+1}=5.25^n+16.2^n+2.2^n\)
\(\equiv 5.2^n+16.2^n+2.2^n\pmod {23}\)
\(\equiv 23.2^n\equiv 0\pmod {23}\)
Ta có đpcm.
b)
\(2^{2n+2}+24n+14\) hiển nhiên chia hết cho $2(1)$
Mặt khác:
Nếu $n=3k+1$:
$2^{2n+2}+24n+14=2^{6k+4}+72k+38$
$=16.2^{6k}+72k+38\equiv 16+72k+38=54+72k\equiv 0\pmod 9$
Nếu $n=3k$:
$2^{2n+2}+24n+14=2^{6k+2}+72k+14=4.2^{6k}+72k+14$
$\equiv 4+72k+14=18+72k\equiv 0\pmod 9$
Nếu $n=3k+2$:
$2^{2n+2}+24n+14=2^{6k+6}+72k+62\equiv 1+72k+62$
$\equiv 63+72k\equiv 0\pmod 9$
Vậy tóm lại $2^{2n+2}+24n+14$ chia hết cho $9$ (2)
Từ $(1);(2)\Rightarrow 2^{2n+2}+24n+14\vdots 18$ (đpcm)
cho n là số tự nhiên,chứng minh:
a,5^2n+1 +2^n+4 +2^n+1 chia hết cho 23
b,2^2n+2 +24n +14 chia hết cho 18
cho a,b là các số nguyên dương thỏa mãn (a;65)=(b;65)=1 chứng minh a^12-b^12 chia hết cho 65