Tính tổng
A; x^2+5x^2+(-3x^2)
B;5xy^2+1\2xy^2+1\4xy^2+(-1\2)xy^2
C;3x^2y^2z^2+x^2y^2z^2
Tính tổng
A=3+33+35+37+...+319
\(\Leftrightarrow9A=3^3+3^5+...+3^{21}\\ \Leftrightarrow9A-A=3^3+3^5+...+3^{21}-3-3^3-3^5-...-3^{19}\\ \Leftrightarrow8A=3^{21}-3\Leftrightarrow A=\dfrac{3^{21}-3}{8}\)
tính tổng
a, 1+(-2)+3+(-4)+........+99+(-100)+101
A=1-2+3-4+5-6+.....+99-100+101
A = (1 - 2 ) + ( 3 - 4 ) + ( 5 - 6 ) + ... + ( 99 - 100 ) + 101
A = ( -1 ) + ( -1 ) + ( -1 ) + ... + ( -1 ) + 101
A = ( -1 ) . 50 + 101
A = -50 + 101
A = 51
tính tổng
A=20+21+22+2 2021
B=1+3+32+......+3100
a: \(2A=2^1+2^2+...+2^{2022}\)
\(\Leftrightarrow A=2^{2022}-1\)
\(A=1+2+2^2+...+2^{2021}\)
\(2A=2+2^2+2^3+...+2^{2020}\)
\(2A-A=\left(2+2^2+2^3+...+2^{2020}\right)-\left(1+2+2^2+...+2^{2021}\right)\)
\(A=2^{2020}-1\)
Tính tổng
A=2+2^3+2^5+2^7+2^9+....+2^2009
A=2+2^3+2^5+...+2^2009
4A=2^3+2^5+2^7+...+2^2011
4A-A=(2^3+2^5+2^7+...+2^2011)-(2+2^3+2^5+...+2^2009)
3A=2^2011-2
A=(2^2011-2):3
Tính tổng
A = 1 + 5 + 52 + 53 + .... + 52022
B = 6 + 62 + 63 + ..... + 640
C = 42 + 44 + ..... + 414
D = 3 + 33 + 35 + ..... + 325
a: 5A=5+5^2+...+5^2023
=>4A=5^2023-1
=>A=(5^2023-1)/4
b: 6B=6^2+6^3+...+6^41
=>5B=6^41-6
=>B=(6^41-6)/5
c: 16C=4^4+4^6+...+4^16
=>15C=4^16-4^2
=>C=(4^16-4^2)/15
d: 9D=3^3+3^5+...+3^27
=>8D=3^27-3
=>D=(3^27-3)/8
Tính tổng
A) A= 1+2+3+...+100
B) B= 2+4+6+...+120
C) A= 3+5+8+...+99
D) B= 3+6+9+...123
A=[(99-3):3+1].(99+3):2=33.102:2=33.51=1683
C=[(99-3):3+1].(99+3):2=33.102:2=33.51=1683
B=[(120-2):2+1].(120+2):2=60.122:2=60.61=3660
A=[(100-1):1+1].(100+1):2=100.101:2=50.101=5050
D=[(123-3):3+1].(123+3):2=41.126:2=41.63=2583
vừa nãy cậu chx đăng hết câu hỏi nên mik làm 1 câu
bài 3 tính tổng
a, A=2/3.5+2/5.7+2/7.9+.....+2/201.203
b, B=3/4.7+3/7.10+3/10.13+.....+3/73.76
mik đang gấp lắm
a: \(A=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{201}-\dfrac{1}{203}=\dfrac{1}{3}-\dfrac{1}{203}=\dfrac{200}{609}\)
b: \(B=\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{73}-\dfrac{1}{76}\)
\(=\dfrac{1}{4}-\dfrac{1}{76}=\dfrac{18}{76}=\dfrac{9}{38}\)
B2: Tính tổng
A=24+25+26+...+122 C=100-99+98-97+96-95+...+2-1
B=12+15+18+21+...+1995 D=1+3+5+7+...+2021
\(A=\dfrac{\left(\dfrac{122-24}{1}+1\right)\left(122+24\right)}{2}=7227\)
\(B=\dfrac{\left(\dfrac{1995-12}{3}+1\right)\left(1995+12\right)}{2}=664317\)
Câu 1: Tính tổng
a, A = 1 + 3 + 3 mũ 2 + 3 mũ 3 +...+ 3 mũ 2012
b, B = 1 + 10 + 10 mũ 2 + 10 mũ 3 +...+ 10 mũ 2023
`#3107.101107`
1.
`a,`
\(A=1+3+3^2+3^3+...+3^{2012}\)
`3A = 3 + 3^2 + 3^3 + ... + 3^2013`
`3A - A = (3 + 3^2 + 3^3 + ... + 3^2013) - (1 + 3 + 3^2 + 3^3 + ... + 3^2012)`
`2A = 3 + 3^2 + 3^3 + ... + 3^2013 - 1 - 3 - 3^2 - 3^3 - ... - 3^2012`
`2A = 3^2013 - 1`
`=> A = (3^2013 - 1)/2`
Vậy, `A = (3^2013 - 1)/2`
`b,`
\(B=1+10+10^2+10^3+...+10^{2023}\)
`10B = 10 + 10^2 + 10^3 + ... + 10^2024`
`10 B - B = (10 + 10^2 + 10^3 + ... + 10^2024) - (1 - 10 + 10^2 + 10^3 + ... + 10^2023)`
`9B = 10 + 10^2 + 10^3 + ... + 10^2024 - 1 - 10^2 - 10^3 - ... - 10^2023`
`9B = 10^2024 - 1`
`=> B = (10^2024 - 1)/9`
Vậy, `B = (10^2024 - 1)/9.`
`a)A=1+3+3^2+3^3+...+3^2012`
`=>3A=3+3^2+3^3+...+3^2013`
`=>3A-A=2A=3^2013-1`
`=>A=(3^2013-1)/2`
`b)B=1+10+10^2+...+10^2024`
`=>10B=10+10^2+10^3+....+10^2025`
`=>10B-B=9B=10^2025-10`
`=>B=(10^2025-10)/9`
10.4. Tính tổng
a) \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\)
b) \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\)
c) \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) +...........\(\dfrac{1}{99.100}\)
d) \(\dfrac{3}{1.2}\) + \(\dfrac{3}{2.3}\) +.........\(\dfrac{1}{99.100}\)
giúp em
a)
`1/1-1/2`
`=2/2-1/2`
`=1/2`
b)
`1/(1*2)+1/(2*3)`
`=1/1-1/2+1/2-1/3`
`=1/1-1/3`
`=3/3-1/3`
`=2/3`
c)
\(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{99\cdot100}\\ =\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\\ =\dfrac{1}{1}-\dfrac{1}{100}\\ =\dfrac{99}{100}\)
d)
\(\dfrac{3}{1\cdot2}+\dfrac{3}{2\cdot3}+...+\dfrac{3}{99\cdot100}\) đề phải như thế này chứ nhỉ?
\(=\dfrac{1\cdot3}{1\cdot2}+\dfrac{1\cdot3}{2\cdot3}+...+\dfrac{1\cdot3}{99\cdot100}\\ =3\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{99\cdot100}\right)\\ =3\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\\ =3\left(\dfrac{1}{1}-\dfrac{1}{100}\right)\\ =3\cdot\dfrac{99}{100}\\ =\dfrac{297}{100}\)