a: \(2A=2^1+2^2+...+2^{2022}\)
\(\Leftrightarrow A=2^{2022}-1\)
\(A=1+2+2^2+...+2^{2021}\)
\(2A=2+2^2+2^3+...+2^{2020}\)
\(2A-A=\left(2+2^2+2^3+...+2^{2020}\right)-\left(1+2+2^2+...+2^{2021}\right)\)
\(A=2^{2020}-1\)
a: \(2A=2^1+2^2+...+2^{2022}\)
\(\Leftrightarrow A=2^{2022}-1\)
\(A=1+2+2^2+...+2^{2021}\)
\(2A=2+2^2+2^3+...+2^{2020}\)
\(2A-A=\left(2+2^2+2^3+...+2^{2020}\right)-\left(1+2+2^2+...+2^{2021}\right)\)
\(A=2^{2020}-1\)
Tính tổng sau:
A=2+22+23+...+219+220
B=5+52+53+...+550
C=1+3+32+33+...+3100
cho tổng A = 1 3 6 10 15 21 hãy tìm số hạng thứ 22 của tổngA
a, A = 1 + 2 + 22 + 23 + ... + 250 =
b, B = 1 + 3 + 32 + 33 + ... 3100 =
c, C = 5 + 52 + 53 + ... 530 =
d, D = 2100 = 299 + 298 - 297 + ... + 22 - 2
Bài 1: tính tổng dãy số sau:
A = 1+3+32+33+...+399+3100
Các bạn xem bài giải của mình nếu đúng tick cho mình nhé!
Giải
Ta có: 3A = 3.(1+3+32+33+...+399+3100)(1+3+32+33+...+399+3100)
3A = 3+32+33+...+3100+31013+32+33+...+3100+3101
Suy ra: 3A – A = (3+32+33+...+3100+3101)−(1+3+32+33+...+399+3100)(3+32+33+...+3100+3101)−(1+3+32+33+...+399+3100)
2A = 3101−13101−1
⇒⇒ A = 3101−123101−12
Vậy A = 3101−12
a) Thu gọn tổng sau A = 1 + 2 + 22 + 23 + ….+ 219 + 220. Tìm x biết A + 1 = 2x
b) Cho B = 1 + 3 + 32 + 33+ …. + 399 + 3100.Tìm x biết 2B + 1 = 3x+1
Cho S = 1-3+32-33+...+398 - 399.
a) Chứng minh rằng : S là bội của -20.
b) Tính S, từ đó suy ra 3100 chia cho 4 dư 1.
B2: Tính tổng
A=24+25+26+...+122 C=100-99+98-97+96-95+...+2-1
B=12+15+18+21+...+1995 D=1+3+5+7+...+2021
a) Tính A 332 33 ...399 3100
B = 2 + 22 + 23 + 24 + … + 2100
b) Cho
2 3 101 A 133 3 ...3 . Chứng minh: A chia hết cho 13
c) Tìm tất cả các số tự nhiên n thoả mãn 5n + 14 chia hết cho n + 2
tính tổng
A=1+2+3+....+7+8
B=3+4+5+...+10+11
C=1+3+5+...+13+15
D=2+4+6+...+18+20
E=1+4+7+...+22+25
G=1+5+9+...+33+37+41
làm nhanh cho mik nha
chiều mik phải nộp r