Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
II
Xem chi tiết
LF
4 tháng 11 2016 lúc 17:41

\(VT=27x^2-36x+12+\frac{8x}{y}\)

\(=\frac{8x}{1-x}+18x\left(1-x\right)+45x^2-54x+12\)

\(\ge45x^2-54x+12+24x\)

\(=45x^2-30x+12=5\left(9x^2-6x+\frac{12}{5}\right)\)

\(=5\left[\left(3x-1\right)^2+\frac{7}{5}\right]\ge7\)

Dấu = khi \(x=\frac{1}{3};y=\frac{2}{3}\)

Bình luận (0)
NM
Xem chi tiết
NM
29 tháng 11 2019 lúc 20:49

\(VT=3\left(9x^2-12x+4\right)+\frac{8x}{1-x}=27x^2-36x+12+\frac{8x}{1-x}\)

\(=27x^2-36x+4+\frac{8}{1-x}=27x^2-18x-6+8\left(1-x\right)+\frac{8}{1-x}\)

\(=27x^2-18x+3+8\left(1-x\right)+\frac{8}{1-x}-9\)

\(=3\left(3x-1\right)^2+8\left(1-x\right)+\frac{8}{1-x}-9\)

\(\Rightarrow VT\ge2\sqrt{8^2}-9=7\)

Dấu " = " xảy ra khi \(x=\frac{1}{3}\)

Bình luận (0)
 Khách vãng lai đã xóa
KQ
Xem chi tiết
H24
28 tháng 11 2019 lúc 18:39

Cho y ở đề bài làm gì trong khi biểu thức ở vế trái bên dưới ko có y?

Bình luận (0)
 Khách vãng lai đã xóa
KQ
28 tháng 11 2019 lúc 19:06

à là \(\frac{8x}{y}\)đó

Bình luận (0)
 Khách vãng lai đã xóa
NT
Xem chi tiết
VM
Xem chi tiết
PA
Xem chi tiết
HN
25 tháng 9 2016 lúc 17:59

a/ \(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)=x^2y^2+\frac{1}{x^2y^2}+2=\left(xy-\frac{1}{xy}\right)^2+4\ge4\)

Suy ra Min M = 4 . Dấu "=" xảy ra khi x=y=1/2

b/ Đề đúng phải là \(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\ge\frac{3}{2}\)

Ta có \(6=\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\ge\frac{9}{2\left(x+y+z\right)}\Rightarrow x+y+z\ge\frac{3}{4}\)

Lại có \(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\ge\frac{9}{8\left(x+y+z\right)}\ge\frac{9}{8.\frac{3}{4}}=\frac{3}{2}\)

Bình luận (1)
TV
Xem chi tiết
H24
8 tháng 3 2021 lúc 20:42

undefinedundefinedundefined

Bình luận (0)
TT
Xem chi tiết
NL
27 tháng 11 2019 lúc 22:57

\(VT=3\left(9x^2-12x+4\right)+\frac{8x}{1-x}=27x^2-36x+12+\frac{8x}{1-x}\)

\(=27x^2-36x+4+\frac{8}{1-x}=27x^2-18x-6+8\left(1-x\right)+\frac{8}{1-x}\)

\(=27x^2-18x+3+8\left(1-x\right)+\frac{8}{1-x}-9\)

\(=3\left(3x-1\right)^2+8\left(1-x\right)+\frac{8}{1-x}-9\)

\(\Rightarrow VT\ge2\sqrt{8^2}-9=7\)

Dấu "=" xảy ra khi \(x=\frac{1}{3}\)

Bình luận (0)
 Khách vãng lai đã xóa
TQ
Xem chi tiết
TN
10 tháng 8 2017 lúc 22:47

post từng câu một thôi bn nhìn mệt quá

Bình luận (0)