Cho ΔABC, gọi M là trung điểm của AB. Chứng minh rằng MC <(BC+AC):2
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho ΔABC có AB = AC và M là điểm chung của BC
a) Chứng minh ΔABC=ΔACM
b) Chứng minh AM vuông góc với BC
c) Gọi N là trung điểm của AB, trên tia đối của NC, lấy điểm K sao cho NK = NC. Chứng minh rằng AK = 2.MC
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó: ΔABM=ΔACM
b: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
c: Xét tứ giác AKBC có
N là trung điểm của AB
N là trung điểm của KC
Do đó: AKBC là hình bình hành
Suy ra: AK=BC=2MC
a) Xét \(\Delta BACvà\Delta NAMcó\)
\(\widehat{BAC}=\widehat{NAM}\) ( đối đỉnh )
\(BA=NA\) ( gt )
\(CA=MA\) ( gt )
\(\Rightarrow\Delta BAC=\Delta NAM\) ( c.g.c )
\(\Rightarrow BC=MN\) ( 2 cạnh tương ứng )
mik chỉ lm đc v hoi xin lũi bn do chx hiểu cái ý 2 câu a
Cho ΔABC có AB = AC và M là trung điểm của BC. Gọi N là trung điểm của AB, trên tia đối của tia NC lấy điểm K sao cho NK = NC.
a) Chứng minh ΔABM = ΔACM b) Chứng minh rằng AK = 2.MC c) Tính số đo của ∠MAK
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó: ΔABM=ΔACM
b: Xét tứ giác AKBC có
N là trung điểm của AB
N là trung điểm của KC
Do đó: AKBC là hình bình hành
Suy ra: AK=BC=2MC
Cho ΔABC vuông tại A, đường trung tuyến CM.
a) Cho biết BC = 10cm, AC = 6cm. Tính độ dài đoạn thẳng AB, BM.
b) Trên tia đối của tia MC lấy điểm D sao cho MD = MC. Chứng minh rằng ΔMAC = ΔMBD và AC = BD.
c) Chứng minh rằng AC + BC > 2CM.
d) Gọi K là điểm trên đoạn thẳng AM sao cho . Gọi N là giao điểm của CK và AD, I là giao điểm của BN và CD. Chứng minh rằng: CD = 3ID.
Cho ΔABC gọi M là trung điểm của cạch AB. Trên tia đối của tia MC lấy điểm N sao cho MN=MC chứng minh rằng.
a)ΔMBC=ΔMAN
b)ΔMNC=ΔBMN
Mong mọi ng giúp nhá! thank mọi ng
a: Xét ΔMBC và ΔMAN có
MB=MA
\(\widehat{BMC}=\widehat{AMN}\)
MC=MN
Do đó: ΔMBC=ΔMAN
Cho ΔABC vuông tại A, AB AC, M là trung điểm của BC, từ M kẻ đường thẳng song song vs AC, AB lần lượt cắt AB tại E, AC tại Fa Chứng minh EFCB là hình thang b Chứng minh AEMF là hình chữ nhậtc Gọi O là trung điểm của AM. Chứng minh E và F đối xứng qua Od Gọi D là trung điểm của MC. Chứng minh OMDF là hình thoi
a, Ta co : M la trung diem cua BC
Ma EM//AC =>E=90(A=90)
Hay : E la trung diem AB
Và MF//AB =>F=90 (A=90)
Hay : F la trung diem AC
Xét tam giác ABC co :
BE=EA va AF=FC
=>EF la tdb => EF=1/2BC va EF//BC
Hay tu giac EFBC la hinh thang (2 goc day song song)
b, Xet tu giac EMFA co :
A=E=F=90
=>EMFA la HCN
C, Ta co : AM cat EF tai O
Hay O la trung diem cua AM va EF
Nen EF se di qua O
Vay E va F doi xung qua O
d, Xet tam giac AMC co :
AO=OM va AF=FC
=>OF la dtb => OF=1/2MC va OF//MC
Xet tam gac AMC co :
AO=OM va MD=DC
=>OD la dtb => OD=1/2AC va OD//AC
Xet tu giac OMDF co :
OF//MC=>OF//MD
OF=1/2MC=>OF=MD(MD=DC)
=>OMDF la HBH
Ma EA vuong goc voi AC
Hay MF vuong goc voi OD (MF//AE va OD//AC)
=> Hình bình hành OMDF là hình thoi ( HBH có 2 đường chéo vuông góc với nhau là hình thoi)
Cho ΔABC, gọi D, E theo thứ tự là trung điểm của AB, AC. Gọi O là điểm bất kì nằm trong ΔABC. Vẽ điểm M đối xứng O qua D, vẽ điểm N đối xứng với O qua E. Chứng minh rằng MNCB là hình bình hành Cho ΔABC, gọi D, E theo thứ tự là trung điểm của AB, AC. Gọi O là điểm bất kì nằm trong ΔABC. Vẽ điểm M đối xứng O qua D, vẽ điểm N đối xứng với O qua E. Chứng minh rằng MNCB là hình bình hành
Cho ΔABC gọi M là trung điểm của BC. Trên tia đối MC lấy điểm N sao cho: MC=MN. Chứng minh rằng:
a)ΔAMN=Δbmc
b)AN//BC
c)ΔNAC=ΔCBN
1. Cho ΔABC có AB = AC và AB > BC. Gọi M là trung điểm của cạnh BC
a) Chứng minh rằng ΔABC = ΔACM và AM là đường trung trực của BC
b) Trên tia đối của tia MA , lấy điểm D sao cho MD = MA . Chứng minh AB //CD
Vẽ hình giùm em
a)
Sửa đề: Chứng minh ΔABM=ΔACM
Xét ΔABM và ΔACM có
AB=AC(gt)
AM chung
BM=CM(M là trung điểm của BC)
Do đó: ΔABM=ΔACM(c-c-c)
Ta có: AB=AC(gt)
nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: MB=MC(M là trung điểm của BC)
nên M nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra AM là đường trung trực của BC
b) Xét ΔABM vuông tại M và ΔDCM vuông tại M có
MB=MC(M là trung điểm của BC)
AM=DM(gt)
Do đó: ΔABM=ΔDCM(hai cạnh góc vuông)
⇒\(\widehat{ABM}=\widehat{DCM}\)(hai góc tương ứng)
mà \(\widehat{ABM}\) và \(\widehat{DCM}\) là hai góc ở vị trí so le trong
nên AB//CD(Dấu hiệu nhận biết hai đường thẳng song song)
Câu 1:Cho ΔABC vuông tại A, đường trung tuyến CM.a) Cho biết BC = 10cm, AC = 6cm. Tính độ dài đoạn thẳng AB, BM.b) Trên tia đối của tia MC lấy điểm D sao cho MD = MC. Chứng minh rằng ΔMAC = ΔMBD và AC = BD.c) Chứng minh rằng AC + BC > 2CM.d) Gọi K là điểm trên đoạn thẳng AM sao cho AM32AK=. Gọi N là giao điểm của CK và AD, I là giao điểm của BN và CD. Chứng minh rằng: CD = 3ID
Câu 2;Cho tam giác ABC vuông tại A có AB = 5cm, BC = 10cm.a) Tính độ dài AC.b) Vẽ đường phân giác BD của ΔABC và gọi E là hình chiếu của D trên BC. Chứng minh ΔABD = ΔEBD và BDAE⊥.c) Gọi giao điểm của hai đường thẳng ED và BA là F. Chứng minh: ΔABC = ΔAFC.d) Qua A vẽ đường thẳng song song với BC cắt CF tại G. Chứng minh ba điểm B, D, G thẳng hàng