Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho ΔABC có AB = AC và M là trung điểm của BC. Gọi N là trung điểm của AB, trên tia đối của tia NC lấy điểm K sao cho NK = NC.
a) Chứng minh ΔABM = ΔACM
b) Chứng minh rằng AK = 2.MC
c) Tính số đo của?
Cho tam giác ABC . GỌi M,N lần lượt là trung điểm của cạnh AB và AC . Trên tia đối của tia MC lấy điểm P sao cho MP = MC . Trên tia đối của tia NB lấy điểm Q sao cho NQ = NB .
a) Chứng minh A là trung điểm của PQ
b) Chứng minh MN song song với BC và 4MN = PQ
c) Cho biết \(\widehat{CAB}=90^o\) . Chứng minh \(MP^2=BC^2-\dfrac{3}{4}AB^2\)
cho tam giác ABC vuông tại A . Vẽ điểm M sao cho MC vuống góc AC và MC = AB , gọi AM cắt BC tại 0 . Chứng minh O là trung điểm của BC và AM
Bài toán 13. Cho ΔABC vuông cân tại A, trung tuyến AM. Lấy E ∈ BC. BH, CK ⊥ AE (H, K ∈ AE). Chứng minh rằng Δ MHK vuông cân.
Bài toán 14. Cho ΔABC có góc ABC = 500; góc BAC = 700. Phân giác trong góc ACB cắt AB tại M. Trên MC lấy điểm N sao cho góc MBN = 400. Chứng minh rằng: BN = MC.
Bài toán 15. Cho ΔABC. Vẽ ra phía ngoài của tam giác này các tam giác vuông cân ở A là ABE và ACF. Vẽ AH ⊥ BC. Đường thẳng AH cắt EF tại O. Chứng minh rằng O là trung điểm của EF.
Cho ∆ABC cân tại A, kẻ AH ⊥ BC tại H.
a) Chứng minh rằng ∆ABH = ∆ACH
b) Giả sử AB = 8cm; BC = 6cm. Tính AH?
c) Kẻ HM ⊥ AB tại M, HN ⊥ AC tại N. Chứng minh MN // BC
d) Gọi I là trung điểm của MN, chứng minh rằng A, I, H thẳng hàng.
Cho tam giác ABC Gọi M là trung điểm của AB Trên tia đối của tia MC lấy điểm N sao cho MC = M N chứng minh rằng:
a/ΔAMN=ΔBMC b/AN //BC c/ΔNAC=ΔCBN
Cho \(\Delta\)ABC vuông tại A; có AB=3cm ,AC=4cm.Chứng minh:
a, Tính BC
b, Trên tia đối của AB lấy M sao cho AM=AC
Trên tia đối của AC lấy N sao cho AN=AB. Chứng minh: BC=MN ;NB//MC
c, Gọi I là trung điểm của MC. Chứng minh :\(\Delta\)BIN cân
Cho tam giác ABC, gọi M và N lần lượt là trung điểm của AB và AC. Trên tia đối của tia NM lấy điểm D sao cho ND = NM
a) Chứng minh : AD // MC
b) Chứng minh : BC = 2MN