\(x^3+10-2\sqrt{2x+1}=2\left(8x+\sqrt{16-3x}\right)\)
\(x^3+10-2\sqrt{2x+1}=2\left(8x+\sqrt{16-3x}\right)\)
giải phương trình sau:
a) \(4x^2+\left(8x-4\right).\sqrt{x}-1=3x+2\sqrt{2x^2+5x-3}\)
b) \(8x^3-36x^2+\left(1-3x\right)\sqrt{3x-2}-3\sqrt{3x-2}+63x-32=0\)
c) \(2\sqrt[3]{3x-2}-3\sqrt{6-5x}+16=0\)
d) \(\sqrt[3]{x+6}-2\sqrt{x-1}=4-x^2\)
Giải các phương trình sau:
1/ \(2x^2-8x+\sqrt{x^2-4x+16}=4\)
2/\(3\left(x^2+2\right)=10\sqrt{x^3+1}\)
3/\(\sqrt{3\left(1-x\right)}-\sqrt{3+x}=2\)
Thấy : \(x^2-4x+16=\left(x-2\right)^2+12>0\forall x\)
P/t \(\Leftrightarrow2\left(x^2-4x+16\right)-36+\sqrt{x^2-4x+16}=0\)
Đặt \(t=\sqrt{x^2-4x+16}>0\) ; khi đó :
\(2t^2+t-36=0\) \(\Leftrightarrow\left[{}\begin{matrix}t=4\\t=-\dfrac{9}{2}\left(L\right)\end{matrix}\right.\)
Với t = 4 hay \(\sqrt{x^2-4x+16}=4\Leftrightarrow x^2-4x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
Vậy ...
Câu 1 bạn trên giải rồi mik k giải nx nha
2/ \(3\left(x^2+2\right)=10\sqrt{x^3+1}\)
\(3\left(x^2-x+1\right)+3\left(x+1\right)=10\sqrt{\left(x+1\right)\left(x^2-x+1\right)}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x+1}=a\ge0\\\sqrt{x^2-x+1}=b\ge0\end{matrix}\right.\)
pt⇔ \(3a^2+3b^2-10ab=0\)
\(\Leftrightarrow\left(3a-b\right)\left(a-3b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3b=b\\a=3b\end{matrix}\right.\)
Đến đây bạn tự giải tiếp nha
3/ \(\sqrt{3-3x}-\sqrt{3+x}=2\)
\(\left(\sqrt{3-3x}-3\right)-\left(\sqrt{3+x}-1\right)=0\)
\(\dfrac{-3\left(x+2\right)}{\sqrt{3-3x}+3}-\dfrac{x+2}{\sqrt{3+x}+1}=0\)
+) \(x=-2\left(TM\right)\)
+) \(x\ne-2\Rightarrow\dfrac{-3}{\sqrt{3-3x}+3}-\dfrac{1}{\sqrt{3+x}+1}=0\)
Vì VT<0 => ptvn
2 ) ĐK : \(x\ge-1\)
P/t \(\Leftrightarrow9\left(x^2+2\right)^2=100\left(x^3+1\right)\)
\(\Leftrightarrow9x^4+36x^2+36=100x^3+100\)
\(\Leftrightarrow9x^4-100x^3+36x^2-64=0\)
\(\Leftrightarrow\left(x^2-10x-8\right)\left(9x^2-10x+8\right)=0\)
\(\Leftrightarrow x^2-10x-8=0\) ( 9x^2 - 10x + 8 > 0 )
\(\Leftrightarrow x=5\pm\sqrt{33}\) ( t/m )
Vậy ...
\(\left(1\right)\sqrt{x^2-9}-2\sqrt{x-3}=0\)
\(\left(2\right)\sqrt{4x+1}-\sqrt{3x-4}=1\)
\(\left(3\right)\sqrt{x^2-10x+25}=5-x\)
\(\left(4\right)\sqrt{x^2-8x+16}=x+2\)
1:
\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}-2\right)=0\)
=>x-3=0 hoặc \(\sqrt{x+3}=2\)
=>x=3 hoặc x+3=4
=>x=1(loại) hoặc x=3(nhận)
2:
\(\Leftrightarrow\left(\sqrt{4x+1}-\sqrt{3x-4}\right)^2=1\)
=>\(4x-1+3x-4-2\sqrt{\left(4x+1\right)\left(3x-4\right)}=1\)
=>\(\sqrt{4\left(4x+1\right)\left(3x-4\right)}=7x-6\)
=>4(12x^2-16x+3x-4)=(7x-6)^2
=>49x^2-84x+36=48x^2-52x-16
=>-84x+36=-52x-16
=>-32x=-52
=>x=13/8
3: =>\(\sqrt{\left(x-5\right)^2}=5-x\)
=>|x-5|=5-x
=>x-5<=0
=>x<=5
4: \(\Leftrightarrow\left|x-4\right|=x+2\)
=>\(\left\{{}\begin{matrix}x>=-2\\\left(x-4\right)^2=\left(x+2\right)^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=-2\\x^2-8x+16=x^2+4x+4\end{matrix}\right.\)
=>x>=-2 và -8x+16=4x+4
=>x=1
giải pt a. \(9x+7=6\sqrt{8x+1}+4\sqrt{x+3}\)
b. \(\sqrt{\left(3x-3\right)\left(x+3\right)+16}+\sqrt{5\left(x-2\right)\left(x+4\right)+54}=-x^2+2x+4\)
giải các phương trình sau:
\(1,\sqrt{18x}-6\sqrt{\dfrac{2x}{9}}=3-\sqrt{\dfrac{x}{2}}\)
\(2,\sqrt{3x}-2\sqrt{12x}+\dfrac{1}{3}\sqrt{27x}=-4\)
3, \(3\sqrt{2x}+5\sqrt{8x}-20-\sqrt{18}=0\)
\(4,\sqrt{16x+16}-\sqrt{9x+9}=1\)
\(5,\sqrt{4\left(1-3x\right)}+\sqrt{9\left(1-3x\right)}=10\)
\(6,\dfrac{2}{3}\sqrt{x-3}+\dfrac{1}{6}\sqrt{x-3}-\sqrt{x-3}=\dfrac{-2}{3}\)
2: ĐKXĐ: x>=0
\(\sqrt{3x}-2\sqrt{12x}+\dfrac{1}{3}\cdot\sqrt{27x}=-4\)
=>\(\sqrt{3x}-2\cdot2\sqrt{3x}+\dfrac{1}{3}\cdot3\sqrt{3x}=-4\)
=>\(\sqrt{3x}-4\sqrt{3x}+\sqrt{3x}=-4\)
=>\(-2\sqrt{3x}=-4\)
=>\(\sqrt{3x}=2\)
=>3x=4
=>\(x=\dfrac{4}{3}\left(nhận\right)\)
3:
ĐKXĐ: x>=0
\(3\sqrt{2x}+5\sqrt{8x}-20-\sqrt{18}=0\)
=>\(3\sqrt{2x}+5\cdot2\sqrt{2x}-20-3\sqrt{2}=0\)
=>\(13\sqrt{2x}=20+3\sqrt{2}\)
=>\(\sqrt{2x}=\dfrac{20+3\sqrt{2}}{13}\)
=>\(2x=\dfrac{418+120\sqrt{2}}{169}\)
=>\(x=\dfrac{209+60\sqrt{2}}{169}\left(nhận\right)\)
4: ĐKXĐ: x>=-1
\(\sqrt{16x+16}-\sqrt{9x+9}=1\)
=>\(4\sqrt{x+1}-3\sqrt{x+1}=1\)
=>\(\sqrt{x+1}=1\)
=>x+1=1
=>x=0(nhận)
5: ĐKXĐ: x<=1/3
\(\sqrt{4\left(1-3x\right)}+\sqrt{9\left(1-3x\right)}=10\)
=>\(2\sqrt{1-3x}+3\sqrt{1-3x}=10\)
=>\(5\sqrt{1-3x}=10\)
=>\(\sqrt{1-3x}=2\)
=>1-3x=4
=>3x=1-4=-3
=>x=-3/3=-1(nhận)
6: ĐKXĐ: x>=3
\(\dfrac{2}{3}\sqrt{x-3}+\dfrac{1}{6}\sqrt{x-3}-\sqrt{x-3}=-\dfrac{2}{3}\)
=>\(\sqrt{x-3}\cdot\left(\dfrac{2}{3}+\dfrac{1}{6}-1\right)=-\dfrac{2}{3}\)
=>\(\sqrt{x-3}\cdot\dfrac{-1}{6}=-\dfrac{2}{3}\)
=>\(\sqrt{x-3}=\dfrac{2}{3}:\dfrac{1}{6}=\dfrac{2}{3}\cdot6=\dfrac{12}{3}=4\)
=>x-3=16
=>x=19(nhận)
Giải pt
\(1)4x^2+\sqrt{3x+1}+5=13x\)
\(2)7x^2-13x+8=2x^2.\sqrt[3]{x\left(1+3x-3x^2\right)}\)
\(3)x^3-4x^2-5x+6=\sqrt[3]{7x^2+9x-4}\)
\(4)x^3-5x^2+4x-5=\left(1-2x\right)\sqrt[3]{6x^2-2x+7}\)
\(5)8x^2-13x+7=\left(1+\dfrac{1}{x}\right)\sqrt[3]{3x^2-2}\)
Để giải các phương trình này, chúng ta sẽ làm từng bước như sau: 1. 13x(7-x) = 26: Mở ngoặc và rút gọn: 91x - 13x^2 = 26 Chuyển về dạng bậc hai: 13x^2 - 91x + 26 = 0 Giải phương trình bậc hai này để tìm giá trị của x. 2. (4x-18)/3 = 2: Nhân cả hai vế của phương trình với 3 để loại bỏ mẫu số: 4x - 18 = 6 Cộng thêm 18 vào cả hai vế: 4x = 24 Chia cả hai vế cho 4: x = 6 3. 2xx + 98x2022 = 98x2023: Rút gọn các thành phần: 2x^2 + 98x^2022 = 98x^2023 Chia cả hai vế cho 2x^2022: x + 49 = 49x Chuyển các thành phần chứa x về cùng một vế: 49x - x = 49 Rút gọn: 48x = 49 Chia cả hai vế cho 48: x = 49/48 4. (x+1) + (x+3) + (x+5) + ... + (x+101): Đây là một dãy số hình học có công sai d = 2 (do mỗi số tiếp theo cách nhau 2 đơn vị). Số phần tử trong dãy là n = 101/2 + 1 = 51. Áp dụng công thức tổng của dãy số hình học: S = (n/2)(a + l), trong đó a là số đầu tiên, l là số cuối cùng. S = (51/2)(x + (x + 2(51-1))) = (51/2)(x + (x + 100)) = (51/2)(2x + 100) = 51(x + 50) Vậy, kết quả của các phương trình là: 1. x = giá trị tìm được từ phương trình bậc hai. 2. x = 6 3. x = 49/48 4. S = 51(x + 50)
Giải phương trình vô tỉ:
a) \(4x^2-4x-10=\sqrt{8x^2-6x-10}\)
b) \(\sqrt{\left(x+1\right)\left(2-x\right)}=1+2x-2x^2\)
c) \(\sqrt{3x+8+6\sqrt{3x-1}}+\sqrt{3x+8-6\sqrt{3x-1}}=3x+4\)
d) \(2x\sqrt{x^2-x+1}+4\sqrt{3x+1}=2x^2+2x+6\)
câu a nè bạn: http://123link.pw/O59k8hdZ
a,Ta có:\(4x^2-4x-10=\sqrt{8x^2-6x-5}\)
\(\Leftrightarrow16x^4+16x^2+100-80x^2-32x^3+80x=8x^2-6x-5\)
\(\Leftrightarrow16x^4-32x^3-64x^2+80x+100-8x^2+6x+5=0\)
\(\Leftrightarrow16x^4-32x^3-72x^2+86x+110=0\)
\(\Leftrightarrow2\left(x+1\right)\left(2x-5\right)\left(4x^2-2x-11\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{5}{2}\\4x^2-2x-11=0\Rightarrow\left[{}\begin{matrix}\dfrac{1+3\sqrt{5}}{4}\\\dfrac{1-3\sqrt{5}}{4}\end{matrix}\right.\end{matrix}\right.\)
Vậy ....
a)Giải các phương trình sau bằng phương pháp đặt ẩn phụ:
1) \(x^2-3x-3=\frac{3\left(\sqrt[3]{x^3-4x^2+4}-1\right)}{1-x}\) ;2)\(1+\frac{2}{3}\sqrt{x-x^2}=\sqrt{x}+\sqrt{1-x}\)
b) Giải các phương trình sau(không giới hạn phương pháp):
1)\(2\left(1-x\right)\sqrt{x^2+2x-1}=x^2-2x-1\) ; 2)\(\sqrt{2x+4}-2\sqrt{2-x}=\frac{12x-8}{\sqrt{9x^2+16}}\)
3)\(\frac{3x^2+3x-1}{3x+1}=\sqrt{x^2+2x-1}\) ; 4) \(\frac{2x^3+3x^2+11x-8}{3x^2+4x+1}=\sqrt{\frac{10x-8}{x+1}}\)
5)\(13x-17+4\sqrt{x+1}=6\sqrt{x-2}\left(1+2\sqrt{x+1}\right)\);
6)\(x^2+8x+2\left(x+1\right)\sqrt{x+6}=6\sqrt{x+1}\left(\sqrt{x+6}+1\right)+9\)
7)\(x^2+9x+2+4\left(x+1\right)\sqrt{x+4}=\frac{5}{2}\sqrt{x+1}\left(2+\sqrt{x+4}\right)\)
8)\(8x^2-26x-2+5\sqrt{2x^4+5x^3+2x^2+7}\)
Nhìn không đủ chán rồi không dám động vào
À do nãy máy lag sr :) Chứ bài đặt ẩn phụ mệt lắm :)