\(\frac{x+1}{2018}+\frac{x+1}{2019}=\frac{x+1}{2020}+\frac{x+1}{2021}\)
TÌM X BIẾT:
\(\frac{x-4}{2021}+\frac{x-3}{2020}=\frac{x-2}{2019}+\frac{x-1}{2018}\)
HELP ME!!
Ai nhanh và đúng mik tick.
\(\frac{x-4}{2021}+\frac{x-3}{2020}=\frac{x-2}{2019}+\frac{x-1}{2018}\)
\(\Leftrightarrow\left(\frac{x-4}{2021}+1\right)+\left(\frac{x-3}{2020}+1\right)=\left(\frac{x-2}{2019}+1\right)+\left(\frac{x-1}{2018}+1\right)\)
\(\Leftrightarrow\frac{x+2017}{2021}+\frac{x+2017}{2020}=\frac{x+2017}{2019}+\frac{x+2017}{2018}\)
\(\Leftrightarrow\frac{x+2017}{2021}+\frac{x+2017}{2020}-\frac{x+2017}{2019}-\frac{x+2017}{2018}=0\)
\(\Leftrightarrow\left(x+2017\right)\left(\frac{1}{2021}+\frac{1}{2020}-\frac{1}{2019}-\frac{1}{2018}\right)=0\)
Mà \(\left(\frac{1}{2021}+\frac{1}{2020}-\frac{1}{2019}-\frac{1}{2018}\right)\ne0\)
\(\Leftrightarrow x+2017=0\)
\(\Leftrightarrow x=-2017\)
Vậy ..
=> (x-4/2021 +1) + (x-3/2020 +1) = (x-2/2019 +1)+ (x-1/2018 +1)
=> x+2017/2021 + x+2017/2020 = x+2017/2019 + x+2017/2018
=> x+2017/2018 + x+2017/2018 - x+2017/2020 - x+2017/2021 = 0
=> (x+2017).(1/2018+1/2019+1/2020+1/2021) = 0
=> x+2017 = 0 ( vì 1/2018+1/2019+1/2020+1/2021 > 0 )
=> x=-2017
Vậy x=-2017
k mk nha
\(\frac{x-4}{2021}+\frac{x-3}{2020}=\frac{x-2}{2019}+\frac{x-1}{2018}\)
\(\left(\frac{x-4}{2021}+1\right)+\left(\frac{x-3}{2020}+1\right)=\left(\frac{x-2}{2019}+1\right)+\left(\frac{x-1}{2018}+1\right)\)
\(\frac{x-2017}{2021}+\frac{x-2017}{2020}=\frac{x-2017}{2019}+\frac{x-2017}{2018}\)
\(\frac{x-2017}{2021}+\frac{x-2017}{2020}-\frac{x-2017}{2019}-\frac{x-2017}{2018}=0\)
\(\left(x-2017\right).\left(\frac{1}{2021}+\frac{1}{2020}-\frac{1}{2019}-\frac{1}{2018}\right)=0\)
vì \(\frac{1}{2021}+\frac{1}{2020}-\frac{1}{2019}-\frac{1}{2018}\ne0\)nên x - 2017 = 0 \(\Rightarrow\)x = 2017
Tìm x;y;z thỏa mãn:
\(\frac{\sqrt{x-2018}-1}{x-2018}+\frac{\sqrt{y-2019}-1}{y-2019}+\frac{\sqrt{z-2020}-1}{z-2020}=\frac{3}{4}\)
Giải phương trình sau:
\(\frac{x+1}{2018}\)+\(\frac{x+2}{2019}\)=\(\frac{x+3}{2020}\)+\(\frac{x+4}{2021}\)
\(\frac{x+1}{2018}+\frac{x+2}{2019}=\frac{x+3}{2020}+\frac{x+4}{2021}\)
\(\Leftrightarrow\left(\frac{x+1}{2018}-1\right)+\left(\frac{x+2}{2019}-1\right)=\left(\frac{x+3}{2020}-1\right)+\left(\frac{x+4}{2021}-1\right)\)
\(\Leftrightarrow\frac{x-2017}{2018}+\frac{x-2017}{2019}=\frac{x-2017}{2020}+\frac{x-2017}{2021}\)
\(\Leftrightarrow\left(x-2017\right)\left(\frac{1}{2018}+\frac{1}{2019}-\frac{1}{2020}-\frac{1}{2021}\right)=0\)
\(\Leftrightarrow x-2017=0\)\(\left(\frac{1}{2018}+\frac{1}{2019}-\frac{1}{2020}-\frac{1}{2021}\ne0\right)\)
\(\Leftrightarrow x=2017\)
Vậy \(S=\left\{2017\right\}\)
Rút gọn:
\(\frac{\frac{1}{2020}+\frac{2}{2019}+\frac{3}{2018}+...+\frac{2019}{2}+\frac{2020}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2021}}\)
Đặt \(A=\frac{\frac{1}{2020}+\frac{2}{2019}+\frac{3}{2018}+...+\frac{2019}{2}+\frac{2020}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2021}}\)
\(A=\frac{1+\left(\frac{1}{2020}+1\right)+\left(\frac{2}{2019}+1\right)+\left(\frac{3}{2018}+1\right)+...+\left(\frac{2019}{2}+1\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2021}}\)
\(A=\frac{\frac{2021}{2021}+\frac{2021}{2020}+\frac{2021}{2019}+...+\frac{2021}{2}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2021}}\)
\(A=\frac{2021\left(\frac{1}{2021}+\frac{1}{2020}+\frac{1}{2019}+...+\frac{1}{2}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2021}}=2021\)
tìm x
\(\frac{x+1}{2019}+\frac{x+2}{2020}=\frac{x+3}{2021}+\frac{x+4}{2022}\)
ko ghi lại đề
ta thấy : 2019 - 1 = 2018
2020 - 2 = 2018
2021 - 3 = 2018
2022 - 4 = 2018
=> x = 2018
thử lại :
2018+1/2019 + 2018+2/2020 = 2018+3/2021 + 2018+4/2022
= 1 + 1 = 1 + 1
2 = 2
2020 - 2 = 2018
2021 - 3 = 2018
2022 - 4 = 2018
=> x = 2018
thây zô mà thử lại
Tìm x
\(\frac{x-2017}{2015.2016}+\frac{x-2018}{2016.2017}+\frac{x-2019}{2017.2018}+\frac{x-2020}{2018.1019}=\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}+\frac{1}{1018}\)
Tìm x biết
\(\frac{x+4}{2019}+\frac{x+3}{2020}=\frac{x+2}{2021}+\frac{x+1}{2022}\)
\(\frac{x+4}{2019}+\frac{x+3}{2020}=\frac{x+2}{2021}+\frac{x+1}{2020}\)
\(\Leftrightarrow(\frac{x+4}{2019}+1)+(\frac{x+3}{2020}+1)=(\frac{x+2}{2021}+1)+(\frac{x+1}{2022}+1)\)
\(\Leftrightarrow\frac{x+2023}{2019}+\frac{x+2023}{2020}=\frac{x+2023}{2021}+\frac{x+2023}{2022}\)
\(\Leftrightarrow\frac{x+2023}{2019}+\frac{x+2023}{2020}-\frac{x+2023}{2021}-\frac{x+2023}{2022}=0\)
\(\Leftrightarrow\left(x+2023\right)\left(\frac{1}{2019}+\frac{1}{2020}-\frac{1}{2021}-\frac{1}{2020}\right)=0\)
\(\Leftrightarrow x+2023=0\)
\(\Leftrightarrow x=-2023\)
Nhầm đề :( Với bước thứ 4 sửa thành ( 1/2019 + 1/2020 - 1/2021 - 1/2022 )
\(\frac{x+4}{2019}+\frac{x+3}{2020}=\frac{x+2}{2021}+\frac{x+1}{2022}\)
\(\Leftrightarrow\)\(\frac{x+4}{2019}+\frac{x+3}{2020}+2=\frac{x+2}{2021}+\frac{x+1}{2022}+2\)
\(\Leftrightarrow\)\(\left(\frac{x+4}{2019}+1\right)+\left(\frac{x+3}{2020}+1\right)=\left(\frac{x+2}{2021}+1\right)+\left(\frac{x+1}{2022}+1\right)\)
\(\Leftrightarrow\)\(\left(\frac{x+4}{2019}+\frac{2019}{2019}\right)+\left(\frac{x+3}{2020}+\frac{2020}{2020}\right)\)\(=\)\(\left(\frac{x+2}{2021}+\frac{2021}{2021}\right)+\left(\frac{x+1}{2022}+\frac{2022}{2022}\right)\)
\(\Leftrightarrow\)\(\frac{x+2023}{2019}+\frac{x+2023}{2020}=\frac{x+2023}{2021}+\frac{2023}{2022}\)
\(\Leftrightarrow\)\(\frac{x+2023}{2019}+\frac{x+2023}{2020}-\frac{x+2023}{2021}-\frac{x+2023}{2022}=0\)
\(\Leftrightarrow\) \(\left(x+2023\right).\left(\frac{1}{2019}+\frac{1}{2020}-\frac{1}{2021}-\frac{1}{2022}\right)=0\)
\(\Leftrightarrow\)\(x+2023=0\) ( Vì \(\frac{1}{2019}+\frac{1}{2020}-\frac{1}{2021}-\frac{1}{2022}\ne0\))
\(\Leftrightarrow\)\(x=-2023\)
Vậy x = -2023
\(\frac{x+4}{2017}+\frac{x+3}{2018}+\frac{x+2}{2019}+\frac{x+1}{2020}\)