cho 2 số x,y thỏa mãn đẳng thức:(x+căn x2+2022)nhân(y+căn y2+2022)=2022.tính x+y
Cho biết các số x,y,z thỏa mãn :
x2+2y+1=0
y2+2z+1=0
z2+2x+1=0
Tính giá trị biểu thức:
a) A = x2020 + y2020+z2020
b) B=\(\dfrac{1}{x^{2022}}+\dfrac{1}{y^{2022}}+\dfrac{1}{z^{2022}}\)
Ta có: \(\left\{{}\begin{matrix}x^2+2y+1=0\\y^2+2z+1=0\\z^2+2x+1=0\end{matrix}\right.\)
\(\Rightarrow x^2+2y+1+y^2+2z+1+z^2+2x+1=0\)
\(\Rightarrow\left(x+1\right)^2+\left(y+1\right)^2+\left(z+1\right)^2=0\)
\(\Rightarrow x=y=z=-1\)(do \(\left(x+1\right)^2,\left(y+1\right)^2,\left(z+1\right)^2\ge0\forall x,y,z\))
a) \(A=x^{2020}+y^{2020}+z^{2020}=\left(-1\right)^{2020}+\left(-1\right)^{2020}+\left(-1\right)^{2020}=1+1+1=3\)
b) \(B=\dfrac{1}{x^{2020}}+\dfrac{1}{y^{2020}}+\dfrac{1}{z^{2020}}=\dfrac{1}{\left(-1\right)^{2020}}+\dfrac{1}{\left(-1\right)^{2020}}+\dfrac{1}{\left(-1\right)^{2020}}=\dfrac{1}{1}+\dfrac{1}{1}+\dfrac{1}{1}=3\)
tìm số nguyên x y thỏa mãn (x+3)^2022+(y-2)^2022=0
tìm số nguyên x y thỏa mãn (x+3)^2022+(y-2)^2022=0
Cho các số a,b,c,d khác 0 và x,y,z,t thỏa mãn:
x^2022+y^2022+z^2022+t^2022/a^2+b^2+c^2+d^2=x^2022/a^2+y^2022/b^2+z^2022/c^2+t^2022/d^2.
Tính T=x^2023+y^2023+z^2023+t^2023
Cho hai số x và y thỏa mãn (x + 1)^2 +(y^2 + 3)^2 = 9. Khi đó giá trị của x^2022 + y^2022 bằng:
A. -1
B. 2
C. 3
D.0
Cho hàm số \(y=f\left(x\right)=x^{2023}+ax^{2019}+3\) thỏa mãn \(f\left(2022\right)=2021\). Tính f(-2022)
Tính B = \(13x^7-5y^3+2022\) tại x,y thỏa mãn: \(\left|x-1\right|+\left(y+2\right)^{2022}=0\)
\(\left|x-1\right|+\left(y+2\right)^{2022}=0\\ \Rightarrow\left\{{}\begin{matrix}\left|x-1\right|=0\\\left(y+2\right)^{2022}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-1=0\\y+2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\\ \Rightarrow B=13.1-5\left(-8\right)+2022=13+40+2022=2075\)
|x-1|+(y+2)2022=0
Do |x-1| và (y+2)2022 đều ≥0⇒\(\left\{{}\begin{matrix}x-1=0\\y+2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
⇒B=13.(1)7-5.(-2)3+2022=13+40+2022=2075
Cho các số x, y thỏa mãn /2x-1/ +(y-2) mũ 2022 <=0. Tính giá trị của biểu thức B = 12x2 + 4xy2
|2x - 1| + (y - 2)² ≤ 0 (1)
Do |2x - 1| ≥ 0 và (y - 2)²⁰²² ≥ 0 (với mọi x, y ∈ R)
(1) ⇒ |2x - 1| + (y - 2)²⁰²² = 0
⇒ |2x - 1| = 0 và (y - 2)²⁰²² = 0
*) |2x - 1| = 0
2x - 1 = 0
2x = 1
x = 1/2
*) (y - 2)²⁰²² = 0
y - 2 = 0
y = 2
⇒ B = 12x² + 4xy²
= 12.(1/2)² + 4.(1/2).2²
= 3 + 8
= 11
Cho các số x,y thỏa mãn\(\sqrt{x+2}-y^3=\sqrt{y+2}-x^3\).Tìm GTNN của biểu thức A=\(x^2-xy+y^2+2x+2022\)