Những câu hỏi liên quan
NL
Xem chi tiết
LL
27 tháng 9 2021 lúc 12:54

Ta có: \(\left\{{}\begin{matrix}x^2+2y+1=0\\y^2+2z+1=0\\z^2+2x+1=0\end{matrix}\right.\)

\(\Rightarrow x^2+2y+1+y^2+2z+1+z^2+2x+1=0\)

\(\Rightarrow\left(x+1\right)^2+\left(y+1\right)^2+\left(z+1\right)^2=0\)

\(\Rightarrow x=y=z=-1\)(do \(\left(x+1\right)^2,\left(y+1\right)^2,\left(z+1\right)^2\ge0\forall x,y,z\))

a) \(A=x^{2020}+y^{2020}+z^{2020}=\left(-1\right)^{2020}+\left(-1\right)^{2020}+\left(-1\right)^{2020}=1+1+1=3\)

b) \(B=\dfrac{1}{x^{2020}}+\dfrac{1}{y^{2020}}+\dfrac{1}{z^{2020}}=\dfrac{1}{\left(-1\right)^{2020}}+\dfrac{1}{\left(-1\right)^{2020}}+\dfrac{1}{\left(-1\right)^{2020}}=\dfrac{1}{1}+\dfrac{1}{1}+\dfrac{1}{1}=3\)

Bình luận (0)
DK
Xem chi tiết
DK
Xem chi tiết
BC
Xem chi tiết
H24
Xem chi tiết
KK
17 tháng 3 2022 lúc 14:41

D

Bình luận (0)
H24
17 tháng 3 2022 lúc 14:42

A

Bình luận (0)
H24
17 tháng 3 2022 lúc 15:16

D

Bình luận (0)
BB
Xem chi tiết
MN
Xem chi tiết
NT
11 tháng 12 2021 lúc 22:03

B=13-5+2022=2030

Bình luận (0)
NM
11 tháng 12 2021 lúc 22:05

\(\left|x-1\right|+\left(y+2\right)^{2022}=0\\ \Rightarrow\left\{{}\begin{matrix}\left|x-1\right|=0\\\left(y+2\right)^{2022}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-1=0\\y+2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\\ \Rightarrow B=13.1-5\left(-8\right)+2022=13+40+2022=2075\)

Bình luận (0)
DB
11 tháng 12 2021 lúc 22:06

|x-1|+(y+2)2022=0

Do |x-1| và (y+2)2022 đều ≥0⇒\(\left\{{}\begin{matrix}x-1=0\\y+2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

⇒B=13.(1)7-5.(-2)3+2022=13+40+2022=2075

Bình luận (0)
CU
Xem chi tiết
KL
6 tháng 11 2023 lúc 15:06

|2x - 1| + (y - 2)² ≤ 0 (1)

Do |2x - 1| ≥ 0 và (y - 2)²⁰²² ≥ 0 (với mọi x, y ∈ R)

(1) ⇒  |2x - 1| + (y - 2)²⁰²² = 0

⇒ |2x - 1| = 0 và (y - 2)²⁰²² = 0

*) |2x - 1| = 0

2x - 1 = 0

2x = 1

x = 1/2

*) (y - 2)²⁰²² = 0

y - 2 = 0

y = 2

⇒ B = 12x² + 4xy²

= 12.(1/2)² + 4.(1/2).2²

= 3 + 8

= 11

Bình luận (0)
LT
Xem chi tiết