Những câu hỏi liên quan
LN
Xem chi tiết
NL
24 tháng 1 2022 lúc 8:35

Đường tròn (C) tâm \(I\left(1;-2\right)\) bán kính \(R=3\)

a. Đường thẳng cắt đường tròn tại 2 điểm pb khi:

\(d\left(I;d\right)< R\Leftrightarrow\dfrac{\left|\sqrt{2}-2m+1-\sqrt{2}\right|}{\sqrt{2+m^2}}< 3\)

\(\Leftrightarrow\left(2m-1\right)^2< 9\left(m^2+2\right)\)

\(\Leftrightarrow8m^2+4m+17>0\) (luôn đúng)

Vậy đường thẳng luôn cắt đường tròn tại 2 điểm pb với mọi m

b. \(S_{IAB}=\dfrac{1}{2}IA.IB.sin\widehat{AIB}=\dfrac{1}{2}R^2.sin\widehat{AIB}\le\dfrac{1}{2}R^2\) do \(sin\widehat{AIB}\le1\)

Dấu "=" xảy ra khi \(sin\widehat{AIB}=1\Rightarrow\Delta IAB\) vuông cân tại I

\(\Rightarrow d\left(I;d\right)=\dfrac{R}{\sqrt{2}}\Leftrightarrow\dfrac{\left|2m-1\right|}{\sqrt{m^2+2}}=\dfrac{3}{\sqrt{2}}\)

\(\Leftrightarrow m^2+8m+16=0\Rightarrow m=-4\)

Bình luận (1)
MH
Xem chi tiết
NT
31 tháng 12 2021 lúc 22:00

Câu 26: C

Câu 27: A

Bình luận (0)
DD
31 tháng 12 2021 lúc 22:03

Trả lời

C, A

HT

Bình luận (0)
LH
Xem chi tiết
AH
4 tháng 2 2023 lúc 13:52

Lời giải:
Vì $A\in (d_1)$ nên gọi tọa độ của $A$ là $(a, 2a-2)$

Vì $B\in (d_2)$ nên gọi tọa độ của $B$ là $(b, -b-3)$

$M$ là trung điểm của $AB$ nên:

\(3=x_M=\frac{x_A+x_B}{2}=\frac{a+b}{2}\Rightarrow a+b=6(1)\)

\(0=y_M=\frac{y_A+y_B}{2}=\frac{2a-2-b-3}{2}\Rightarrow 2a-b=5(2)\)

Từ $(1); (2)\Rightarrow a=\frac{11}{3}; b=\frac{7}{3}$

Khi đó: $A=(\frac{11}{3}, \frac{16}{3})$

Vì $A, M\in (d)$ nên VTCP của (d) là $\overrightarrow{MA}=(\frac{2}{3}, \frac{16}{3})$

$\Rightarrow \overrightarrow{n_d}=(\frac{-16}{3}, \frac{2}{3})$
PTĐT $(d)$ là:

$\frac{-16}{3}(x-3)+\frac{2}{3}(y-0)=0$
$\Leftrightarrow -8x+y+24=0$

Bình luận (1)
TN
Xem chi tiết
VH
Xem chi tiết
AQ
Xem chi tiết
NL
15 tháng 4 2022 lúc 12:56

a.

Để đường thẳng đi qua A

\(\Rightarrow2.1-m^2-m=0\Leftrightarrow m^2+m-2=0\)

\(\Rightarrow\left[{}\begin{matrix}m=1\\m=-2\end{matrix}\right.\)

b.

Hoành độ giao điểm của (d) với trục hoành:

\(2x+4=0\Rightarrow x=-2\Rightarrow\) hai đường thẳng cắt nhau tại (-2;0)

(d') đi qua  (-2;0) nên:

\(-2+m-2=0\Rightarrow m=4\)

Bình luận (0)
H24
Xem chi tiết
HD
Xem chi tiết
NL
20 tháng 4 2021 lúc 17:33

- Xét đường tròn \(\left(C\right)\) có tâm \(I\left(1;0\right)\) và \(R=\dfrac{\sqrt{5}}{5}\)

- Để đường thẳng d và đường tròn không có điểm chung 

\(\Leftrightarrow d_{\left(d/I\right)}=\dfrac{\left|m-2m+3\right|}{\sqrt{m^2+1}}>R=\dfrac{\sqrt{5}}{5}\)

\(\Leftrightarrow\dfrac{m^2-6m+9}{m^2+1}>\dfrac{1}{5}\)

\(\Leftrightarrow\dfrac{m^2-6m+9-0,2m^2-0,2}{m^2+1}>0\)

\(\Leftrightarrow0,8m^2-6m+8,8>0\)

\(\Leftrightarrow\left[{}\begin{matrix}m>2\\m< \dfrac{11}{2}\end{matrix}\right.\)

Vậy ...

 

Bình luận (0)
H24
Xem chi tiết
HP
31 tháng 5 2021 lúc 15:40

1.

\(\left(C\right):x^2+y^2-2x-4=0\)

\(\Leftrightarrow\left(x-1\right)^2+y^2=5\)

Đường tròn \(\left(C\right)\) có tâm \(I=\left(1;0\right)\), bán kính \(R=\sqrt{5}\)

Phương trình đường thẳng \(d_1\) có dạng: \(x+y+m=0\left(m\in R\right)\)

Mà \(d_1\) tiếp xúc với \(\left(C\right)\Rightarrow d\left(I;d_1\right)=\dfrac{\left|1+m\right|}{\sqrt{2}}=\sqrt{5}\)

\(\Leftrightarrow\left|m+1\right|=\sqrt{10}\)

\(\Leftrightarrow m=-1\pm\sqrt{10}\)

\(\Rightarrow\left[{}\begin{matrix}d_1:x+y-1+\sqrt{10}=0\\d_1:x+y-1-\sqrt{10}=0\end{matrix}\right.\)

Bình luận (0)
HP
31 tháng 5 2021 lúc 15:43

2.

Phương trình đường thẳng \(\Delta\) có dạng: \(x-y+m=0\left(m\in R\right)\)

Ta có: \(d\left(I;\Delta\right)=\sqrt{R^2-\dfrac{MN^2}{4}}=2\)

\(\Leftrightarrow\dfrac{\left|m+1\right|}{\sqrt{2}}=2\)

\(\Leftrightarrow m=-1\pm2\sqrt{2}\)

\(\Rightarrow\left[{}\begin{matrix}\Delta:x-y+1+2\sqrt{2}=0\\\Delta:x-y+1-2\sqrt{2}=0\end{matrix}\right.\)

Bình luận (0)
HP
31 tháng 5 2021 lúc 21:42

3.

Vì \(P\in d\Rightarrow P=\left(m;m+1\right)\left(m\in R\right)\)

\(\Rightarrow IP=\sqrt{\left(m-1\right)^2+\left(m+1\right)^2}=\sqrt{2m^2+2}\)

Ta có: \(cosAIP=cos60^o=\dfrac{R}{IP}=\dfrac{\sqrt{5}}{IP}=\dfrac{1}{2}\Rightarrow IP=2\sqrt{5}\)

\(\Rightarrow\sqrt{2m^2+2}=2\sqrt{5}\)

\(\Leftrightarrow2m^2+2=20\)

\(\Leftrightarrow m=\pm3\)

\(\Rightarrow\left[{}\begin{matrix}P=\left(3;4\right)\\P=\left(-3;-2\right)\end{matrix}\right.\)

Bình luận (0)
H24
Xem chi tiết