Những câu hỏi liên quan
L2
Xem chi tiết
NL
22 tháng 10 2021 lúc 21:27

\(x^3+y^3+y^3\ge3\sqrt[3]{x^3.y^3.y^3}=3xy^2\)

\(x^3+1+1\ge3x\)

\(2\left(y^3+1+1\right)\ge6y\)

Cộng vế:

\(2\left(x^3+2y^3\right)+6\ge3\left(x+2y+xy^2\right)=12\)

\(\Rightarrow x^3+2y^3\ge3\) (đpcm)

Dấu "=" xảy ra khi \(x=y=1\)

Bình luận (1)
L2
Xem chi tiết
NL
22 tháng 10 2021 lúc 21:46

\(x^3+x\ge2\sqrt{x^4}=2x^2\)

Tương tự:

\(y^3+y\ge2y^2\)

\(z^3+z\ge2z^2\)

Cộng vế:

\(x^3+y^3+z^3+x+y+z\ge2\left(x^2+y^2+z^2\right)=6\)

Dấu "=" xảy ra khi \(x=y=z=1\)

Bình luận (2)
L2
Xem chi tiết
NL
22 tháng 10 2021 lúc 21:29

\(a^3+1+1\ge3a\)

\(b^3+1+1\ge3b\)

\(c^3+1+1\ge3c\)

\(2\left(a^3+b^3+c^3\right)\ge6abc\)

Cộng vế:

\(3\left(a^3+b^3+c^3\right)+6\ge3\left(a+b+c+2abc\right)=15\)

\(\Rightarrow a^3+b^3+c^3\ge3\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=1\)

Bình luận (1)
DM
Xem chi tiết
LL
Xem chi tiết
KS
8 tháng 8 2021 lúc 16:32

Bài 1:

Ta : a + b - 2c = 0

⇒ a = 2c − b thay vào a2 + b2 + ab - 3c2 = 0 ta có:

(2c − b)2 + b2 + (2c − b).b − 3c2 = 0

⇔ 4c2 − 4bc + b2 + b2 + 2bc − b2 − 3c2 = 0

⇔ b2 − 2bc + c2 = 0

⇔ (b − c)2 = 0

⇔ b − c = 0

⇔ b = c

⇒ a + c − 2c = 0

⇔ a − c = 0

⇔ a = c

⇒ a = b = c 

Vậy a = b = c

Bình luận (1)
H24
Xem chi tiết
NT
Xem chi tiết
NP
Xem chi tiết
MT
Xem chi tiết