Những câu hỏi liên quan
H24
Xem chi tiết
HH
6 tháng 2 2021 lúc 15:26

Tui nghĩ cái này L'Hospital chứ giải thông thường là ko ổn :)

\(M=\lim\limits_{x\rightarrow0}\dfrac{\left(1+4x\right)^{\dfrac{1}{2}}-\left(1+6x\right)^{\dfrac{1}{3}}}{1-\cos3x}=\lim\limits_{x\rightarrow0}\dfrac{\dfrac{1}{2}\left(1+4x\right)^{-\dfrac{1}{2}}.4-\dfrac{1}{3}\left(1+6x\right)^{-\dfrac{2}{3}}.6}{3.\sin3x}\)

\(=\lim\limits_{x\rightarrow0}\dfrac{-\dfrac{1}{4}.4\left(1+4x\right)^{-\dfrac{3}{2}}.4+\dfrac{2}{9}.6.6\left(1+6x\right)^{-\dfrac{5}{3}}}{3.3.\cos3x}\) 

Giờ thay x vô là được

\(N=\lim\limits_{x\rightarrow0}\dfrac{\left(1+ax\right)^{\dfrac{1}{m}}-\left(1+bx\right)^{\dfrac{1}{n}}}{\left(1+x\right)^{\dfrac{1}{2}}-1}=\lim\limits_{x\rightarrow0}\dfrac{\dfrac{1}{m}.\left(1+ax\right)^{\dfrac{1}{m}-1}.a-\dfrac{1}{n}\left(1+bx\right)^{\dfrac{1}{n}-1}.b}{\dfrac{1}{2}\left(1+x\right)^{-\dfrac{1}{2}}}=\dfrac{\dfrac{a}{m}-\dfrac{b}{n}}{\dfrac{1}{2}}\)

\(V=\lim\limits_{x\rightarrow0}\dfrac{\left(1+mx\right)^n-\left(1+nx\right)^m}{\left(1+2x\right)^{\dfrac{1}{2}}-\left(1+3x\right)^{\dfrac{1}{3}}}=\lim\limits_{x\rightarrow0}\dfrac{n\left(1+mx\right)^{n-1}.m-m\left(1+nx\right)^{m-1}.n}{\dfrac{1}{2}\left(1+2x\right)^{-\dfrac{1}{2}}.2-\dfrac{1}{3}\left(1+3x\right)^{-\dfrac{2}{3}}.3}\)

\(=\lim\limits_{x\rightarrow0}\dfrac{n\left(n-1\right)\left(1+mx\right)^{n-2}.m-m\left(m-1\right)\left(1+nx\right)^{m-2}.n}{-\dfrac{1}{2}\left(1+2x\right)^{-\dfrac{3}{2}}.2+\dfrac{2}{9}.3.3\left(1+3x\right)^{-\dfrac{5}{3}}}=....\left(thay-x-vo-la-duoc\right)\)

Bình luận (0)
MV
Xem chi tiết
NN
Xem chi tiết
NL
1 tháng 4 2020 lúc 10:34

\(A=\lim\limits_{x\rightarrow0}\frac{\left(1+ax\right)^{\frac{1}{n}}-1}{x}=\lim\limits_{x\rightarrow0}\frac{\frac{a}{n}\left(1+ax\right)^{\frac{1-n}{n}}}{1}=\frac{a}{n}\)

\(B=\lim\limits_{x\rightarrow0}\frac{\left(1+ax\right)^{\frac{1}{n}}-1}{\left(1+bx\right)^{\frac{1}{m}}-1}=\lim\limits_{x\rightarrow0}\frac{\frac{a}{n}\left(1+ax\right)^{\frac{1-n}{n}}}{\frac{b}{m}\left(1+bx\right)^{\frac{1-m}{m}}}=\frac{am}{bn}\)

\(C=\lim\limits_{x\rightarrow0}\frac{\sqrt[3]{1+bx}\sqrt[4]{1+cx}\left(\sqrt{1+ax}-1\right)+\sqrt[4]{1+cx}\left(\sqrt[3]{1+bx}-1\right)+\left(\sqrt[4]{1+cx}-1\right)}{x}\)

\(C=\lim\limits_{x\rightarrow0}\sqrt[3]{1+bx}\sqrt[4]{1+cx}.\frac{\sqrt{1+ax}-1}{x}+\lim\limits_{x\rightarrow0}\sqrt[4]{1+cx}.\frac{\sqrt[3]{1+bx}-1}{x}+\lim\limits_{x\rightarrow0}\frac{\sqrt[4]{1+cx}-1}{x}\)

Từ câu A ta có: \(\lim\limits_{x\rightarrow0}\frac{\sqrt[n]{1+ax}-1}{x}=\frac{a}{n}\)

\(\Rightarrow C=\frac{a}{2}+\frac{b}{3}+\frac{c}{4}\)

Bình luận (0)
 Khách vãng lai đã xóa
MV
Xem chi tiết
NN
Xem chi tiết
NL
2 tháng 4 2020 lúc 10:15

\(A=\lim\limits_{x\rightarrow0}\frac{\left(x+1\right)^{\frac{1}{3}}-1}{\left(2x+1\right)^{\frac{1}{4}}-1}=\lim\limits_{x\rightarrow0}\frac{\frac{1}{3}\left(x+1\right)^{-\frac{2}{3}}}{\frac{1}{2}\left(2x+1\right)^{-\frac{3}{4}}}=\frac{\frac{1}{3}}{\frac{1}{2}}=\frac{2}{3}\)

\(B=\lim\limits_{x\rightarrow7}\frac{\sqrt[3]{4x-1}\sqrt{x-2}}{\sqrt[4]{2x+2}-2}=\frac{3\sqrt{5}}{0}=+\infty\)

\(C=\lim\limits_{x\rightarrow0}\frac{\sqrt{\left(3x+1\right)\left(4x+1\right)}\left(\sqrt{2x+1}-1\right)}{x}+\lim\limits_{x\rightarrow0}\frac{\sqrt{4x+1}\left(\sqrt{3x+1}-1\right)}{x}+\lim\limits_{x\rightarrow0}\frac{\sqrt{4x+1}-1}{x}\)

Xét \(\lim\limits_{x\rightarrow0}\frac{\sqrt{ax+1}-1}{x}=\lim\limits_{x\rightarrow0}\frac{\left(ax+1\right)^{\frac{1}{2}}-1}{x}=\lim\limits_{x\rightarrow0}\frac{\frac{a}{2}\left(ax+1\right)^{-\frac{1}{2}}}{1}=\frac{a}{2}\)

\(\Rightarrow C=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}=\frac{9}{2}\)

\(D=\lim\limits_{x\rightarrow0}\frac{\left(1+4x\right)^{\frac{1}{2}}-\left(1+6x\right)^{\frac{1}{3}}}{x^2}=\lim\limits_{x\rightarrow0}\frac{2\left(1+4x\right)^{-\frac{1}{2}}-2\left(1+6x\right)^{-\frac{2}{3}}}{2x}\)

\(D=\lim\limits_{x\rightarrow0}\frac{-2\left(1+4x\right)^{-\frac{3}{2}}+4\left(1+6x\right)^{-\frac{5}{3}}}{1}=-2+4=2\)

\(E=\lim\limits_{x\rightarrow0}\frac{\left(1+ax\right)^{\frac{1}{n}}-\left(1+bx\right)^{\frac{1}{n}}}{x}=\lim\limits_{x\rightarrow0}\frac{\frac{a}{n}\left(1+ax\right)^{\frac{1-n}{n}}-\frac{b}{n}\left(1+bx\right)^{\frac{1-n}{n}}}{1}=\frac{a-b}{n}\)

Bình luận (0)
 Khách vãng lai đã xóa
NL
2 tháng 4 2020 lúc 15:39

\(B=\lim\limits_{x\rightarrow7}\frac{\sqrt[3]{4x-1}-\sqrt{x+2}}{\sqrt[4]{2x+2}-2}=\lim\limits_{x\rightarrow7}\frac{\left(4x-1\right)^{\frac{1}{3}}-\left(x+2\right)^{\frac{1}{2}}}{\left(2x+2\right)^{\frac{1}{4}}-2}\)

\(B=\lim\limits_{x\rightarrow7}\frac{\frac{4}{3}\left(4x-1\right)^{-\frac{2}{3}}-\frac{1}{2}\left(x+2\right)^{-\frac{1}{2}}}{\frac{1}{2}\left(2x+2\right)^{-\frac{3}{4}}}=\lim\limits_{x\rightarrow7}\frac{\frac{4}{3\sqrt[3]{\left(4x-1\right)^2}}-\frac{1}{2\sqrt{x+2}}}{\frac{1}{2}\sqrt[4]{\left(2x+2\right)^3}}\)

\(=\frac{\frac{4}{3\sqrt[3]{27^2}}-\frac{1}{2\sqrt{9}}}{\frac{1}{2}\sqrt[4]{16^3}}=-\frac{1}{216}\)

Bình luận (0)
 Khách vãng lai đã xóa
NH
Xem chi tiết
AH
1 tháng 3 2021 lúc 0:30

a. Áp dụng công thức L'Hospital:

\(\lim\limits_{x\to 0}\frac{\sqrt{x+1}-\sqrt{1-x}}{\sqrt[3]{x+1}-\sqrt{1-x}}=\lim\limits_{x\to 0}\frac{\frac{1}{2}(x+1)^{\frac{-1}{2}}+\frac{1}{2}(1-x)^{\frac{-1}{2}}}{\frac{1}{3}(x+1)^{\frac{-2}{3}}+\frac{1}{2}(1-x)^{\frac{-1}{2}}}=\frac{1}{\frac{5}{6}}=\frac{6}{5}\)

b.

\(\lim\limits_{x\to 0}(\frac{1}{x}-\frac{1}{x^2})=\lim\limits_{x\to 0}\frac{x-1}{x^2}=-\infty\)

Bình luận (0)
AH
1 tháng 3 2021 lúc 0:35

c. Áp dụng quy tắc L'Hospital:

\(\lim\limits_{x\to +\infty}\frac{x^4-x^3+11}{2x-7}=\lim\limits_{x\to +\infty}\frac{4x^3-3x^2}{2}=+\infty \)

d.

\(\lim\limits_{x\to 5}\frac{7}{(x-1)^2}.\frac{2x+1}{2x-3}=\frac{7}{(5-1)^2}.\frac{2.5+11}{2.5-3}=\frac{11}{16}\)

Bình luận (0)
KQ
Xem chi tiết
BB
Xem chi tiết
LL
12 tháng 9 2021 lúc 21:07

Tham khảo: 

\(x=\dfrac{1}{a}.\sqrt{\dfrac{2a}{b}-1}\Rightarrow ax=\sqrt{\dfrac{2a}{b}-1}\)

\(\Rightarrow\left\{{}\begin{matrix}1+ax=\dfrac{\sqrt{2a-b}+\sqrt{b}}{\sqrt{b}}\\1-ax=\dfrac{\sqrt{b}-\sqrt{2a-b}}{\sqrt{b}}\end{matrix}\right.\)

\(\Rightarrow\dfrac{1-ax}{1+ax}=\dfrac{\sqrt{b}-\sqrt{2a-b}}{\sqrt{b}+\sqrt{2a-b}}=\dfrac{\left(\sqrt{b}-\sqrt{2a-b}\right)^2}{2\left(b-a\right)}\)

Lại có:

\(\dfrac{1+bx}{1-bx}=\dfrac{a+\sqrt{2ab-b^2}}{a-\sqrt{2ab-b^2}}=\dfrac{a^2-\left(2ab-b^2\right)}{\left(a-\sqrt{2ab-b^2}\right)^2}=\dfrac{\left(a-b\right)^2}{\left(a-\sqrt{2ab-b^2}\right)^2}\)

\(\Rightarrow\sqrt{\dfrac{1+bx}{1-bx}}=\dfrac{b-a}{a-\sqrt{2ab-b^2}}\)

\(\Rightarrow A=\dfrac{1-ax}{1+ax}.\sqrt{\dfrac{1+bx}{1-bx}}=\dfrac{\left(\sqrt{b}-\sqrt{2a-b}\right)^2}{2a-2\sqrt{2ab-b^2}}=\dfrac{2a-2\sqrt{2ab-b^2}}{2a-2\sqrt{2ab-b^2}}=1\)

 

Bình luận (0)
BB
Xem chi tiết