tìm tập xác định của hàm số
y= \(\dfrac{x-1}{x^{2^{ }}-x+1}\)
Tìm tập xác định của hàm số
y=\(\dfrac{x-1}{x^3+1}\)
ĐKXĐ:
\(x^3+1\ne0\Leftrightarrow x\ne-1\)
\(\Rightarrow D=R\backslash\left\{-1\right\}\)
tìm tập xác định của hàm số
y=\(\dfrac{1}{x^{4^{ }}-2x^{2^{ }}+3}\)
ĐKXĐ:
\(x^4-2x^2+3\ne0\)
\(\Leftrightarrow\left(x^2-1\right)^2+2\ne0\) (luôn đúng)
Hàm xác định trên R hay \(D=R\)
tìm tập xác định của hàm số
y= \(\dfrac{x-2}{\left(1-x\right)\left(x^2-4x+3\right)}\)
ĐKXĐ:
\(\left(1-x\right)\left(x^2-4x+3\right)\ne0\)
\(\Leftrightarrow-\left(x-1\right)^2\left(x-3\right)\ne0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne1\\x\ne3\end{matrix}\right.\)
Hay \(D=R\backslash\left\{1;3\right\}\)
tìm tập xác định của hàm số
y=\(\dfrac{x+5}{\left(x+1\right)\sqrt{x-1}}\)
Hàm số xác định: \(\Leftrightarrow\left\{{}\begin{matrix}x+1\ne0\\x-1>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ne-1\\x>1\end{matrix}\right.\) \(\Rightarrow x>1\)
Vậy \(D=\left(1;+\infty\right)\)
tìm tập xác định của hàm số
y=\(\sqrt{\dfrac{1+sinx}{1-cosx}}\)
Ta có:
`@-1 <= sin x <= 1`
`<=>0 <= 1+sin x <= 2=>1+sin x >= 0`
`@-1 <= cos x <= 1`
`<=>1 >= -cos x >= -1`
`<=>2 >= 1-cos x >= 0=>1-cos x >= 0`
Hàm số xác định `<=>[1+sin x]/[1-cos x] >= 0`
`<=>{(1+sin x >= 0(L Đ)),(1-cos x > 0):}<=>1-cos x ne 0<=>x ne k2\pi (k in ZZ)`
`=>TXĐ: D=R\\{k2\pi| k in ZZ}`.
Tập xác định của hàm số
y=\(\dfrac{cot\left(x-\dfrac{\pi}{4}\right)}{sin^4x-cos^4x}\)
ĐK: \(\left\{{}\begin{matrix}sin\left(x-\dfrac{\pi}{4}\right)\ne0\\sin^4x-cos^4x\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-\dfrac{\pi}{4}\ne k\pi\\\left(cos^2x-sin^2x\right)\left(cos^2x+sin^2x\right)\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\dfrac{\pi}{4}+k\pi\\cos2x\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\dfrac{\pi}{4}+k\pi\\2x\ne\dfrac{\pi}{2}+k\pi\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\dfrac{\pi}{4}+k\pi\\x\ne\dfrac{\pi}{4}+\dfrac{k\pi}{2}\end{matrix}\right.\)
\(\Leftrightarrow x\ne\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)
I. HÀM SỐ, TXĐ, CHẴN LẺ, ĐƠN ĐIỆU, ĐỒ THỊ.
1. TXĐ CỦA HÀM SỐ
Câu 1.Tìm tập xác định của hàm số y=\(\dfrac{\sqrt{x-1}}{x-3}\)
Câu 2.Tìm tập xác định của hàm số y= \(\sqrt[3]{x-1}\)
Câu 3. Tìm tập xác định của hàm số y=\(\dfrac{\sqrt[3]{1-x}+3}{\sqrt{x+3}}\)
Câu 4. Tìm tập xác định của hàm số y=\(\sqrt{\left|x-2\right|}\)
ĐKXĐ:
a. \(\left\{{}\begin{matrix}x-1\ge0\\x-3\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge1\\x\ne3\end{matrix}\right.\) \(\Rightarrow D=[1;+\infty)\backslash\left\{3\right\}\)
b. \(D=R\)
c. \(x+3>0\Rightarrow x>-3\Rightarrow D=\left(-3;+\infty\right)\)
d. \(\left|x-2\right|\ge0\Rightarrow x\in R\Rightarrow D=R\)
1. Tập hợp xác định của hàm số
y = (3x+10 )/(x^2+14x+45) là:
A.R
B.R \ {3; -5; 9}
C.R \ {-5; -9}
D. R \ {5; 9}
2.Hàm số y = √(x+7) + 2/(x^2 + 6x - 16) có tập xác định D bằng
A. [7;+∞)
B. (-7;+∞) \ {-8;2}
C. [-7; 7] \ {2}
D. [-7;+∞) \ {2}
Giúp e nha mọi người
1.Ý C
Hàm số có nghĩa khi \(x^2+14x+45\ne0\Leftrightarrow x\ne\left\{-5;-9\right\}\)
\(\Rightarrow D=R\backslash\left\{-5;-9\right\}\)
2. Ý D
Hàm số có nghĩa khi \(\left\{{}\begin{matrix}x+7\ge0\\x^2+6x-16\ne0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x\ge-7\\x\ne\left\{2;-8\right\}\end{matrix}\right.\)
\(\Rightarrow D=\)\([-7;+ \infty) \)\(\backslash\left\{2\right\}\)
ĐK : \(x^2+14x+45\ne0\)
\(\Leftrightarrow\hept{\begin{cases}x\ne-5\\x\ne-9\end{cases}}\)
\(TXĐ:D=R\backslash\left\{-5;-9\right\}\)
Chọn C
ĐK : \(\hept{\begin{cases}x+7\ge0\\x^2+6x-16\ne0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge-7\\x\ne-8\\x\ne2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge-7\\x\ne2\end{cases}}\)
\(TXĐ:D=\left(-7;+\infty\right)\backslash\left\{2\right\}\)
Chọn D
Giúp mình với gấp lắm ạ
Tìm tập xác định của hàm số
y = \(\dfrac{cos3x}{1-sinx}\) + tanx
\(y=\dfrac{cos3x}{1-sinx}+tanx=\dfrac{cos3x}{1-sinx}+\dfrac{sinx}{cosx}\)
Hàm số xác định khi \(\left\{{}\begin{matrix}1-sinx\ne0\\cosx\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}sinx\ne1\\cosx\ne0\end{matrix}\right.\Leftrightarrow x\ne\dfrac{\pi}{2}+k\pi\)