Những câu hỏi liên quan
HN
Xem chi tiết
PN
16 tháng 5 2021 lúc 20:13

\(x-5=\frac{1}{3\left(x+2\right)}\left(đkxđ:x\ne-2\right)\)

\(< =>3\left(x-5\right)\left(x+2\right)=1\)

\(< =>3\left(x^2-3x-10\right)=1\)

\(< =>x^2-3x-10=\frac{1}{3}\)

\(< =>x^2-3x-\frac{31}{3}=0\)

giải pt bậc 2 dễ r

Bình luận (0)
 Khách vãng lai đã xóa
PN
16 tháng 5 2021 lúc 20:14

\(\frac{x}{3}+\frac{x}{4}=\frac{x}{5}-\frac{x}{6}\)

\(< =>\frac{4x+3x}{12}=\frac{6x-5x}{30}\)

\(< =>\frac{7x}{12}=\frac{x}{30}< =>12x=210x\)

\(< =>x\left(210-12\right)=0< =>x=0\)

Bình luận (0)
 Khách vãng lai đã xóa
PN
16 tháng 5 2021 lúc 20:15

\(3x\left(2x-3\right)-3\left(3+2x^2\right)=0\)

\(< =>6x^2-9x-9-6x^2=0\)

\(< =>-9x-9=0< =>9x+9=0\)

\(< =>x=-\frac{9}{9}=-1\)

Bình luận (0)
 Khách vãng lai đã xóa
HL
Xem chi tiết
TG
20 tháng 7 2021 lúc 20:52

undefined

Bình luận (0)
PB
Xem chi tiết
CT
3 tháng 12 2019 lúc 6:15

Bình luận (0)
PB
Xem chi tiết
CT
12 tháng 10 2017 lúc 11:50

a)

Bình luận (0)
PL
Xem chi tiết
TP
Xem chi tiết
NT
25 tháng 5 2022 lúc 18:49

1: \(\Leftrightarrow x^2+6x+9-6x+3>x^2-4x\)

=>-4x<12

hay x>-3

2: \(\Leftrightarrow6+2x+2>2x-1-12\)

=>8>-13(đúng)

4: \(\dfrac{2x+1}{x-3}\le2\)

\(\Leftrightarrow\dfrac{2x+1-2x+6}{x-3}< =0\)

=>x-3<0

hay x<3

6: =>(x+4)(x-1)<=0

=>-4<=x<=1

Bình luận (0)
DN
Xem chi tiết
NT
16 tháng 6 2023 lúc 21:31

=>2x^2-3x-4x+6+3x+8<2x^2+4x+2-4x

=>2x^2-4x+14<2x^2+2

=>-4x<-12

=>x>3

Bình luận (0)
H24
Xem chi tiết
NT
5 tháng 2 2022 lúc 21:16

Bài 3: 

b: \(\Leftrightarrow x^2\left(x+1\right)^2=0\)

hay \(x\in\left\{0;-1\right\}\)

c: \(\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)=0\)

=>x-1=0

hay x=1

d: \(\Leftrightarrow6x^2-3x-4x+2=0\)

\(\Leftrightarrow\left(2x-1\right)\left(3x-2\right)=0\)

hay \(x\in\left\{\dfrac{1}{2};\dfrac{2}{3}\right\}\)

Bình luận (0)
PT
Xem chi tiết
EC
13 tháng 8 2021 lúc 10:03

Ta có:\(\left(2x-5\right)\left(\sqrt{x+3}-1\right)=2x^2-x-10\)

     \(\Leftrightarrow\left(2x-5\right)\left(\sqrt{x+3}-1\right)-\left(2x^2-x-10\right)=0\)

    \(\Leftrightarrow\left(2x-5\right).\dfrac{\left(x+2\right)}{\sqrt{x+3}+1}-\left(2x-5\right)\left(x+2\right)=0\)

    \(\Leftrightarrow\left(2x-5\right)\left(x+2\right)\left(\dfrac{1}{\sqrt{x+3}+1}-1\right)=0\)

    \(\Leftrightarrow\left[{}\begin{matrix}2x-5=0\\x+2=0\\\dfrac{1}{\sqrt{x+3}+1}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-2\\\dfrac{1}{\sqrt{x+3}+1}=1\left(1\right)\end{matrix}\right.\)

Giải (1) ta có:

\(\left(1\right)\Leftrightarrow1=\sqrt{x+3}+1\)

      \(\Leftrightarrow\sqrt{x+3}=0\)

      \(\Leftrightarrow x+3=0\)

      \(\Leftrightarrow x=-3\)

Vậy,phương trình có 3 nghiệm là.....

Bình luận (0)
PB
Xem chi tiết
CT
21 tháng 1 2019 lúc 9:18

a) |3x| = x + 6 (1)

Ta có 3x = 3x khi x ≥ 0 và 3x = -3x khi x < 0

Vậy để giải phương trình (1) ta quy về giải hai phương trình sau:

+ ) Phương trình 3x = x + 6 với điều kiện x ≥ 0

Ta có: 3x = x + 6 ⇔ 2x = 6 ⇔ x = 3 (TMĐK)

Do đó x = 3 là nghiệm của phương trình (1).

+ ) Phương trình -3x = x + 6 với điều kiện x < 0

Ta có -3x = x + 6 ⇔ -4x + 6 ⇔ x = -3/2 (TMĐK)

Do đó x = -3/2 là nghiệm của phương trình (1).

Vậy tập nghiệm của phương trình đã cho S = {3; -3/2}

ĐKXĐ: x ≠ 0, x ≠ 2

Quy đồng mẫu hai vễ của phương trình, ta được:

Vậy tập nghiệm của phương trình là S = {-1}

c) (x + 1)(2x – 2) – 3 > –5x – (2x + 1)(3 – x)

⇔ 2x2 – 2x + 2x – 2 – 3 > –5x – (6x – 2x2 + 3 – x)

⇔ 2x2 – 5 ≥ –5x – 6x + 2x2 – 3 + x

⇔ 10x ≥ 2 ⇔ x ≥ 1/5

Tập nghiệm: S = {x | x ≥ 1/5}

Bình luận (0)