Những câu hỏi liên quan
CB
Xem chi tiết
KL
7 tháng 1 2021 lúc 10:43

\(A=\dfrac{1}{2-\sqrt{3}}+\dfrac{1}{2+\sqrt{3}}-\sqrt{37-20\sqrt{3}}\)

\(=\dfrac{2+\sqrt{3}}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}+\dfrac{2-\sqrt{3}}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}-\sqrt{\left(5-2\sqrt{3}\right)^2}\)

\(=2+\sqrt{3}+2-\sqrt{3}-5+2\sqrt{3}\)

\(=2\sqrt{3}-1\)

Bình luận (0)
CT
Xem chi tiết
UI
16 tháng 9 2019 lúc 22:01

\(\sqrt{12-2.2\sqrt{3}.5+25}-\sqrt{12+2.2\sqrt{3}.5+25}\)

\(\sqrt{\left(2\sqrt{3}-5\right)^2}-\sqrt{\left(2\sqrt{3}+5\right)^2}\)

\(|2\sqrt{3}-5|-2\sqrt{3}-5\)

=\(5-2\sqrt{3}-2\sqrt{3}-5=-4\sqrt{3}\)

Bình luận (0)
PA
28 tháng 7 2020 lúc 17:26

bây giờ vẫn còn công chúa

Bình luận (0)
 Khách vãng lai đã xóa
KA
28 tháng 7 2020 lúc 18:03

Trả lời:

\(\sqrt{37-20\sqrt{3}}-\sqrt{37+20\sqrt{3}}\)

\(=\sqrt{25-20\sqrt{3}+12}-\sqrt{25+20\sqrt{3}+12}\)

\(=\sqrt{\left(5-2\sqrt{3}\right)^2}-\sqrt{\left(5+2\sqrt{3}\right)^2}\)

\(=5-2\sqrt{3}-5-2\sqrt{3}\)

\(=-4\sqrt{3}\)

Bình luận (0)
 Khách vãng lai đã xóa
DH
Xem chi tiết
NN
9 tháng 4 2020 lúc 14:43

Bài 1 : 

Ta có : 

\(\sqrt{37-20\sqrt{3}}+\sqrt{37+20\sqrt{3}}=\sqrt{25-2.5.2\sqrt{3}+12}\)

\(+\sqrt{25+2.5.2\sqrt{3}+12}\)

\(=\sqrt{\left(5-2\sqrt{3}\right)^2}+\sqrt{\left(5+2\sqrt{3}\right)^2}\)

\(5-2\sqrt{3}+5+2\sqrt{3}\)

\(=5+5=10\)

Bình luận (0)
 Khách vãng lai đã xóa
NN
9 tháng 4 2020 lúc 14:56

Bài 2 : 

Với x , y , z > 0 . Ta có : 

+ ) \(\frac{x}{y}+\frac{y}{x}\ge2\left(1\right)\)

+ ) \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\left(2\right)\)

+ ) \(x^2+y^2+z^2\ge xy+yz+zx\Leftrightarrow\frac{x^2+y^2+z^2}{xy+yz+zx}\ge1\left(3\right)\)

Xảy ra đăng thức ở : \(\left(1\right),\left(2\right),\left(3\right)\Leftrightarrow x=y=z\) . Ta có : 

\(P=\frac{ab+bc+ca}{a^2+b^2+c^2}+\left(a+b+c\right)^2.\frac{\left(a+b+c\right)}{abc}\)

\(=\frac{ab+bc+ca}{a^2+b^2+c^2}+\left(a^2+b^2+c^2+2ab+2bc+2ca\right).\frac{\left(a+b+c\right)}{abc}\)

Áp dụng các bất đẳng thức (1) , (2) , (3) ta được : 

\(P\ge\frac{ab+bc+ca}{a^2+b^2+c^2}+\left(a^2+b^2+c^2\right).\frac{9}{ab+bc+ca}+2.9\)

\(=\left(\frac{ab+bc+ca}{a^2+b^2+c^2}+\frac{a^2+b^2+c^2}{ab+bc+ca}\right)+8.\frac{a^2+b^2+c^2}{ab+bc+ca}+18\)

\(\ge2+8+18=28\)

Dấu " = "  xảy ra \(\Leftrightarrow\hept{\begin{cases}a^2+b^2+c^2=ab+bc+ca\\ab=bc=ca\end{cases}\Leftrightarrow a=b=c}\)

Bình luận (0)
 Khách vãng lai đã xóa
MM
Xem chi tiết
NL
17 tháng 9 2019 lúc 15:27

\(=\sqrt{\left(5-2\sqrt{3}\right)^2}+\sqrt{\left(5+2\sqrt{3}\right)^2}\)

\(=\left|5-2\sqrt{3}\right|+\left|5+2\sqrt{3}\right|\)

\(=5-2\sqrt{3}+5+2\sqrt{3}\)

\(=10\)

Bình luận (0)
H24
Xem chi tiết
NT
9 tháng 9 2023 lúc 17:30

\(2\sqrt[]{37+20\sqrt[]{3}}-\sqrt[]{73-40\sqrt[]{3}}\)

\(=2\sqrt[]{25+2.5.2\sqrt[]{3}+12}-\sqrt[]{48-2.5.4\sqrt[]{3}+25}\)

\(=2\sqrt[]{\left(5+2\sqrt[]{3}\right)^2}-\sqrt[]{\left(5-4\sqrt[]{3}\right)^2}\)

\(=2\left|5+2\sqrt[]{3}\right|-\left|5-4\sqrt[]{3}\right|\)

\(=2\left(5+2\sqrt[]{3}\right)-\left(4\sqrt[]{3}-5\right)\left(vì.4\sqrt[]{3}>5\right)\)

\(=10+4\sqrt[]{3}-4\sqrt[]{3}+5\)

\(=15\)

Bình luận (0)
NK
Xem chi tiết
H24
24 tháng 9 2023 lúc 16:49

`a)(\sqrt{14}-3\sqrt{2})^2+6\sqrt{28}`

`=14-12\sqrt{7}+18+12\sqrt{7}=32`

`b)2\sqrt{20}-3\sqrt{20}+\sqrt{125}`

`=4\sqrt{5}-6\sqrt{5}+5\sqrt{5}`

`=3\sqrt{5}`.

Bình luận (0)
H9
24 tháng 9 2023 lúc 16:49

a) \(\left(\sqrt{14}-3\sqrt{2}\right)^2-6\sqrt{28}\)

\(=\left(\sqrt{14}\right)^2-2\cdot\sqrt{14}\cdot3\sqrt{2}+\left(3\sqrt{2}\right)^2+6\sqrt{28}\)

\(=14-6\sqrt{28}+18+6\sqrt{28}\)

\(=14+18\)

\(=32\)

b) \(2\sqrt{20}-3\sqrt{20}+\sqrt{125}\)

\(=2\cdot2\sqrt{5}-3\cdot2\sqrt{5}+5\sqrt{5}\)

\(=4\sqrt{5}-6\sqrt{5}+5\sqrt{5}\)

\(=3\sqrt{5}\)

Bình luận (0)
H24
Xem chi tiết
NT
9 tháng 9 2023 lúc 17:31

loading...

Bình luận (0)
H24
Xem chi tiết
NT
7 tháng 7 2021 lúc 22:25

a) Ta có: \(A^3=\left(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\right)^3\)

\(=2+\sqrt{5}+2-\sqrt{5}+3\cdot\sqrt[3]{\left(2+\sqrt{5}\right)\left(2-\sqrt{5}\right)}\left(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\right)\)

\(=4-3\cdot A\)

\(\Leftrightarrow A^3+3A-4=0\)

\(\Leftrightarrow A^3-A+4A-4=0\)

\(\Leftrightarrow A\left(A-1\right)\left(A+1\right)+4\left(A-1\right)=0\)

\(\Leftrightarrow\left(A-1\right)\left(A^2+A+4\right)=0\)

\(\Leftrightarrow A=1\)

Bình luận (0)
TM
Xem chi tiết
NH
2 tháng 9 2017 lúc 12:16

\(A=\sqrt[3]{20+14\sqrt{2}}+\sqrt[3]{20-14\sqrt{2}}=\sqrt[3]{2^3+3.2^2.\sqrt{2}+3.2.\left(\sqrt{2}\right)^2+\left(\sqrt{2}\right)^3}+\sqrt[3]{2^3-3.2^2.\sqrt{2}+3.2.\left(\sqrt{2}\right)^2-\left(\sqrt{2}\right)^3}\)\(=\sqrt[3]{\left(2+\sqrt{2}\right)^3}+\sqrt[3]{\left(2-\sqrt{2}\right)^3}=2+\sqrt{2}+2-\sqrt{2}=4.\)

Bình luận (0)