Tìm cặp số nguyên x, y biết:
\(23x^2y^2+\left(-x^2y^2\right)=84\)
Tìm tất cả các cặp số nguyên (x,y) nguyên thỏa mãn:
\(x^2y^2+\left(x-2\right)^2+\left(2y-2\right)^2-2xy\left(2y-4\right)=5\)
Tìm cặp số nguyên x, y thỏa mãn: \(y^2+2.\left(x^2+1\right)=2y.\left(x+1\right)\)
Tìm các cặp số nguyên x, y thỏa mãn: \(y^2+2.\left(x^2+1\right)=2y.\left(x+1\right)\)
Tìm các cặp số nguyên x, y thỏa mãn: \(y^2+2.\left(x^2+1\right)=2y.\left(x+1\right)\)
Tìm các cặp số nguyên x, y thỏa mãn: \(y^2+2.\left(x^2+1\right)=2y.\left(x+1\right)\)
Cho biểu thức
\(M=5ax^2y^2+\left(\frac{-1}{2}ax^2y^2\right)=7ax^2y^2+\left(-ax^2y^2\right)\)
a) Với giá trị nào của a thì M nhận giá trị âm với mọi x,y?
b) Với giá trị nào của a thì M nhận giá trị dương với mọi x,y?
c) Cho a=2. Tìm cặp số nguyên (x,y) để M=84
Tìm tất cả các cặp (x; y) nguyên thỏa mãn \(x^2y^2+\left(x-2\right)^2+\left(2y-2\right)^2-2xy\left(x+2y-4\right)=5\)
Giải
5 = x2y2 + ( x-2) 2 + ( 2y-2)2 -2xy(x + 2y -4 )
= [ x.y - ( x + 2.y -4 ) ] 2 - 2 ( y - 1 ) ( x - 2 )
= ( xy - x - 2y + 4 )2 -4.( xy - x - 2y + 2 )
= A2 - 4 ( A - 2 )
<=> A2 - 4.A + 3 = 0
<=> \(\orbr{\begin{cases}xy-x-2y+4=3\\xy-x-2y+4=1\end{cases}}\)
Lưu ý : đặt : A = xy - x - 2y + 4
TH1 : xy - x - 2.y + 4 = 3
<=> xy - x - 2y + 1 = 0
<=> x.( y - 1 ) - 2.(y-1 ) = 1
<=> ( x - 2 ) ( y - 1 ) = 1
Ta có bảng :
x-2 | 1 | -1 |
y - 1 | 1 | -1 |
x | 3 | -1 |
y | 2 | 0 |
TH2 : xy - x - 2y + 4 = 1
<=> ( x- 2 ) . ( y -1 ) =-1
x-2 | -1 | 1 |
y - 1 | 1 | -1 |
x | -1 | 3 |
y | 2 | 0 |
Tìm tất cả các cặp (x; y) nguyên thỏa mãn \(x^2y^2+\left(x-2\right)^2+\left(2y-2\right)^2-2xy\left(x+2y-4\right)=0\)
\(x^2y^2+\left(x-2\right)^2+\left(2y-2\right)^2-2xy\left(x+2y-4\right)=0\)
<=> \(x^2y^2+\left(x+2y-4\right)^2-2\left(x-2\right)\left(2y-2\right)-2xy\left(x+2y-4\right)=0\)
<=> \(\left[x^2y^2-2xy\left(x+2y-4\right)+\left(x+2y-4\right)^2\right]-4\left(xy-x-2y+2\right)=0\)
<=> \(\left(xy-x-2y+4\right)^2-4\left(xy-x-2y+4\right)+8=0\)
<=> \(\left(xy-x-2y+2\right)^2+4=0\)(vô nghiệm)
=>phương trình vô nghiệm
Cho \(M=\frac{23}{2}ax^2y^2+\left(-x^2y^2\right)\) biết a = 2, M = 84. Tìm các cặp số nguyên x, y.
Lời giải:
Thay $a=2; M=84$ vào đề bài ta có:
$84=\frac{23}{2}.2x^2y^2+(-x^2y^2)$
$\Leftrightarrow 84=23x^2y^2-x^2y^2=22x^2y^2\Rightarrow x^2y^2=\frac{84}{22}=\frac{42}{11}\not\in\mathbb{Z}$ (vô lý với $x,y\in\mathbb{Z}$)
Vậy không tồn tại $x,y$ nguyên thỏa đề.