a+b+ab=3
tìm giá trị nhỏ nhất của \(y=\frac{3a}{b +1}+\frac{3b}{a+1}+\frac{ab}{a+b}-a^2-b^2\)
Cho a,b,c là các số thực dương thỏa mãn ab+bc+ca=3
Tìm giá trị nhỏ nhất của biểu thức P=\(\dfrac{1+3a}{1+b^2}+\dfrac{1+3b}{1+c^2}+\dfrac{1+3c}{1+a^2}\)
https://hoc24.vn/cau-hoi/cho-abc-0-thoa-man-abbcca3-tim-gia-tri-nho-nhat-cua-pdfrac13a1b2dfrac13b1c2dfrac13c1a2.6181078378966
Cho a,b,c là các số thực dương thỏa mãn ab+bc+ca=3
Tìm giá trị nhỏ nhất của biểu thức \(P=\frac{1+3a}{1+b^2}+\frac{1+3b}{1+c^2}+\frac{1+3c}{1+a^2}\)
Cho hai số dương a,b thỏa mãn: a+b=1.
Giá trị nhỏ nhất của A=\(\frac{3a^2}{a+1}+\frac{3b^2}{b+1}\)
Giúp mình với ạ. Cần gấp lắm...
Áp dụng bđt Bunhiacopski ta có
\(A=3\left(\frac{a^2}{a+1}+\frac{b^2}{b+1}\right)\ge3.\frac{\left(a+b\right)^2}{2+a+b}=\frac{3}{3}=1.\)
Dấu ''='' xảy ra khi \(a=b=\frac{1}{2}\)
@SKT_NTT chứng minh nên dùng Bunhiacopski để chứng minh cũng được mà
Cho 2 số dương a,b thỏa mãn a+b=1. Giá tri nhỏ nhất của \(A=\frac{3a^2}{a+1}+\frac{3b^2^{ }}{b+1}\)
Dùng bđt \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\), với x, y > 0, ta có :
\(\frac{1}{a+1}+\frac{1}{b+1}\ge\frac{4}{a+b+2}=\frac{4}{3}\)(*)
Nhân hai vế của (*) với a2 > 0, ta được : \(\frac{a^2}{a+1}+\frac{a^2}{b+1}\ge\frac{4}{3}a^2\)(1)
Tương tự \(\frac{b^2}{a+1}+\frac{b^2}{b+1}\ge\frac{4}{3}b^2\) (2)
Cộng từng vế (1) và (2) ta được : \(2\left(\frac{a^2}{a+1}+\frac{b^2}{b+1}\right)\ge\frac{4}{3}\left(a^2+b^2\right)\Rightarrow\frac{a^2}{a+1}+\frac{b^2}{b+1}\ge\frac{2}{3}\left(a^2+b^2\right)\)
\(\Rightarrow3\left(\frac{a^2}{a+1}+\frac{b^2}{b+1}\right)\ge2\left(a^2+b^2\right)\) , mà \(2\left(a^2+b^2\right)\ge\left(a+b\right)^2=1\Rightarrow A\ge1\)
Dấu = xảy ra khi a = b = 1/2
1 . Cho các số thực a, b, c dương thỏa mãn
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le3\)
Tính giá trị lớn nhất của biể thức: \(P=\frac{1}{\sqrt{a^2-ab+3b^2+1}}+\frac{1}{\sqrt{b^2-bc+3c^2+1}}+\frac{1}{\sqrt{c^2-ac+3a^2+1}}\)
2 .
Cho các số thực dương a, b, c thỏa mãn: \(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\le1\)
Tìm giá trị nhỏ nhất của biểu thức: \(P=\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ac+a^2}\)
\(P=\sum\frac{1}{\sqrt{a^2+b^2-ab+b^2+b^2+1}}\le\sum\frac{1}{\sqrt{ab+b^2+2b}}=\sum\frac{2}{\sqrt{4b\left(a+b+2\right)}}\)
\(\Rightarrow P\le\sum\left(\frac{1}{4b}+\frac{1}{a+b+1+1}\right)\le\sum\left(\frac{1}{4b}+\frac{1}{16}\left(\frac{1}{a}+\frac{1}{b}+1+1\right)\right)\)
\(\Rightarrow P\le\frac{3}{8}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+\frac{3}{8}\le\frac{3}{2}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
2.
\(1\ge\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge\frac{9}{3+a+b+c}\)
\(\Rightarrow a+b+c+3\ge6\Rightarrow a+b+c\ge6\)
\(P=\sum\frac{a^3}{a^2+ab+b^2}=\sum\left(a-\frac{ab\left(a+b\right)}{a^2+ab+b^2}\right)\ge\sum\left(a-\frac{ab\left(a+b\right)}{3ab}\right)\)
\(\Rightarrow P\ge\sum\left(\frac{2a}{3}-\frac{b}{3}\right)=\frac{1}{3}\left(a+b+c\right)\ge\frac{6}{3}=2\)
Dấu "=" xảy ra khi \(a=b=c=2\)
Ta có : \(ab\le\frac{a^2+b^2}{2}\)
\(\Rightarrow a^2-ab+3b^2+1\ge\frac{a^2}{2}+\frac{5}{2}b^2+1\)
Lại có : \(\left(\frac{a^2}{2}+\frac{5}{2}b^2+1\right)\left(\frac{1}{2}+\frac{5}{2}b^2+1\right)\ge\left(\frac{a}{2}+\frac{5}{2}b+1\right)^2\)
\(\Rightarrow\sqrt{a^2-ab+3b^2+1}\ge\frac{a}{4}+\frac{5b}{4}+\frac{1}{2}\)
\(\Rightarrow\frac{1}{\sqrt{a^2-ab+3b^2+1}}\le\frac{4}{a+b+b+b+b+b+1+1}\le\frac{4}{64}\left(\frac{1}{a}+\frac{5}{b}+2\right)\)
Khi đó :
\(P\le\frac{1}{16}\left(6\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+6\right)\le\frac{3}{2}\)
Dấu " = " xay ra khi a=b=c=1
Vậy \(P_{Max}=\frac{3}{2}\) khi a=b=c=1
Cho a,b,c là các số thực dương có tổng bằng 1.Tìm giá trị nhỏ nhất của biểu thức:
\(P=\frac{1}{\sqrt{3a^2+4ab+b^2}}+\frac{1}{\sqrt{3b^2+4bc+c^2}}+\frac{1}{\sqrt{3c^2+4ca+a^2}}\)
\(3a^2+4ab+b^2=3a^2+3ab+ab+b^2=3a\left(a+b\right)+b\left(a+b\right)=\left(3a+b\right)\left(a+b\right)\)
xong AM -GM
Cho a,b là 2 số thực dương thoả mãn a+b=2. Tìm giá trị nhỏ nhất của biểu thức
\(P=\frac{2a^2+3b^2}{2a^3+3b^3}+\frac{2b^2+3a^2}{2b^3+3a^3}\)
dễ thì bn giải hộ mk đi,nói đc lm đc nhỉ
1)cho a,b,c dương thỏa mãn abc=1
tìm giá trị nhỏ nhất của B=\(\frac{\sqrt{a^3+b^3+1}}{ab}+\frac{\sqrt{b^3+a^3+1}}{bc}+\frac{\sqrt{c^3+a^3+1}}{ca}\)
2) cho x,y,z dương
tìm giá trị nhỏ nhất của P=\(x\left(\frac{x}{2}+\frac{1}{yz}\right)+y\left(\frac{y}{2}+\frac{1}{xz}\right)+z\left(\frac{z}{2}+\frac{1}{xy}\right)\)
cho a,b,c là các số dương thỏa mãn a+b+c=3. Tìn giá trị lớn nhất của \(P=\frac{5b^3-a^3}{ab+3b^2}+\frac{5c^3-b^3}{bc+3c^2}+\frac{5a^3-c^3}{ca+3a^2}\)
Ta có BĐT phụ \(\frac{5b^3-a^3}{ab+3b^2}\le2b-a\)
\(\Leftrightarrow-\frac{\left(a-b\right)^2\left(a+b\right)}{b\left(a+3b\right)}\le0\) *luôn đúng*
Tương tự cho 2 BĐT còn lại cũng có:
\(P\le2a-b+2b-c+2c-a=a+b+c=3\)
Dấu '=" khi \(a=b=c=1\)
Xét \(\frac{5b^3-a^3}{ab+3b^2}-\left(2b-a\right)=\frac{5a^3-a^3-\left(ab+3b^2\right)\left(2b-a\right)}{ab+3b^2}\)
\(=\frac{5b^3-a^3-\left(2ab^2-a^2b+6b^3-3b^2a\right)}{ab+3b^2}=\frac{-b^5-a^3+a^2b+b^2a}{ab+3b^2}\)
\(=\frac{-\left(a+b\right)\left(a-b\right)^2}{ab+3b^3}\le0\)
\(\Rightarrow\frac{5b^3-a^3}{ab+3b^2}\le2b-a\)
Ta có 2 BĐT tương tự \(\hept{\begin{cases}\frac{5c^3-b^3}{bc+3c^2}\le2c-b\\\frac{5a^3-c^3}{ca+3a^2}\le2a-c\end{cases}}\)
Cộng 3 vế BĐT trên ta được \(P\le2\left(a+b+c\right)-\left(a+b+c\right)=a+b+c=3\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}a=b=c\\a+b+c=3\end{cases}\Leftrightarrow a=b=c=1}\)