Cho 2 số dương a,b thỏa mãn a+b=1. Giá tri nhỏ nhất của \(A=\frac{3a^2}{a+1}+\frac{3b^2^{ }}{b+1}\)
Cho a,b,c là các số thực dương có tổng bằng 1.Tìm giá trị nhỏ nhất của biểu thức:
\(P=\frac{1}{\sqrt{3a^2+4ab+b^2}}+\frac{1}{\sqrt{3b^2+4bc+c^2}}+\frac{1}{\sqrt{3c^2+4ca+a^2}}\)
Cho a,b là 2 số thực dương thoả mãn a+b=2. Tìm giá trị nhỏ nhất của biểu thức
\(P=\frac{2a^2+3b^2}{2a^3+3b^3}+\frac{2b^2+3a^2}{2b^3+3a^3}\)
1)cho a,b,c dương thỏa mãn abc=1
tìm giá trị nhỏ nhất của B=\(\frac{\sqrt{a^3+b^3+1}}{ab}+\frac{\sqrt{b^3+a^3+1}}{bc}+\frac{\sqrt{c^3+a^3+1}}{ca}\)
2) cho x,y,z dương
tìm giá trị nhỏ nhất của P=\(x\left(\frac{x}{2}+\frac{1}{yz}\right)+y\left(\frac{y}{2}+\frac{1}{xz}\right)+z\left(\frac{z}{2}+\frac{1}{xy}\right)\)
cho a,b,c là các số dương thỏa mãn a+b+c=3. Tìn giá trị lớn nhất của \(P=\frac{5b^3-a^3}{ab+3b^2}+\frac{5c^3-b^3}{bc+3c^2}+\frac{5a^3-c^3}{ca+3a^2}\)
1 . )
Cho 3 số a,b,c dương. Tìm giá trị lớn nhất của biểu thức
\(P=\frac{a}{2a+b+c}+\frac{b}{2b+c+a}+\frac{c}{2c+a+b}\)
2
cho các số thực không âm a,b,c thỏa mãn \(\sqrt{a}+\sqrt{b}+\sqrt{c}=3\)
Tìm giá trị nhỏ nhất của biểu thức
\(\sqrt{3a^2+2ab+3b^2}+\sqrt{3b^2+2bc+3c^2}+\sqrt{3c^2+2ca+3a^2}\)
Cho các số dương a,b,c thỏa mãn a+b+c=1. Tìm giá trị nhỏ nhất của biểu thức:
A = \(\frac{ab}{a^2+b^2}+\frac{bc}{b^2+c^2}+\frac{ca}{c^2+a^2}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
cho 2 số dương a và b thỏa mãn ab = 1. tìm giá trị nhỏ nhất của:
\(B=\frac{1}{a}+\frac{1}{b}+\frac{2}{a+b}\)
Cho các số thực dương a,b,c thỏa mãn ab+bc+ca=5 . Tìm giá trị nhỏ nhất của
P=\(\frac{3a+3b+2c}{\sqrt{6\left(a^2+5\right)}+\sqrt{6\left(b^2+5\right)}+\sqrt{c^2+5}}\)