Cho phương trình
\(x^2+3x-10=0\)
\(\frac{2x^2_1}{x_1+x_2}+2x_2\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho phương trình
\(x^2+3x-10=0\)
Không giải phương trình
Tính
\(\frac{2x^2_1}{x_1+x_2}+2x_2\)
Áp dụng hệ thức Vi-et,ta có :
\(\hept{\begin{cases}x_1+x_2=-3\\x_1x_2=-10\end{cases}}\)
Ta có : \(\frac{2x_1^2}{x_1+x_2}+2x_2=\frac{2x_1^2+2x_1x_2+2x_2^2}{x_1+x_2}=\frac{2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]+2x_1x_2}{x_1+x_2}\)
\(=\frac{2\left[\left(-3\right)^2-2.\left(-10\right)\right]+2.\left(-10\right)}{-3}=\frac{-38}{3}\)
Cho phương trình \(x^2+3x-10=0\)
Không giải phương trình
a/ Chứng minh phương trình có 2 nghiệm phân biêtn x1. x2. Tìm tổng và tich x1, x2
b/ Tính \(x^2_1+x^2_2\)
\(\frac{1}{x_1}+\frac{1}{x_2}\)
\(\frac{2x_1^2}{x_1+x_2}+2x_2\)
Cho \(x^2-2x+m-1=0\)
Tìm m để phương trính có 2 nghiệm phân biệt \(x_1,x_2\) thõa mãn: \(2x_1x_2+x_2=\sqrt{x^2_1+2x_2}\)
Bạn xem lại xem biểu thức cuối viết đúng chưa vậy?
cho phương trình:\(^{x^2-2x+3m=0}\) Tìm m để phương trình có hai nghiệm \(x_1,x_2\) thỏa mãn \(x_1^2x_2^2=x_1+x_2+7\)
Để phương trình có 2 nghiệm
\(\Delta'\ge0\Rightarrow\left(-1\right)^2-1.3m\ge0\Leftrightarrow1-3m\ge0\Leftrightarrow1\ge3m\Leftrightarrow\dfrac{1}{3}\ge m\)
Theo hệ thức Vi-et ta có:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-\left(-2\right)}{1}=2\\x_1x_2=\dfrac{3m}{1}=3m\end{matrix}\right.\)
Ta có:
\(x_1^2x_2^2=x_1+x_2+7\\ \Leftrightarrow x_1x_2.x_1x_2=x_1+x_2+7\\ \Rightarrow3m.3m=2+7\\ \Leftrightarrow9m^2-9=0\\ \Leftrightarrow\left[{}\begin{matrix}m=-1\left(tm\right)\\m=1\left(ktm\right)\end{matrix}\right.\)
Vậy m = -1
Cho phương trình: $2x^2 - 5x - 3 = 0$ có hai nghiệm là $x_1$, $x_2$.
Không giải phương trình, hãy tính giá trị của biểu thức: $A = (x_1 + 2x_2)(x_2 + 2x_1)$.
Theo hệ thức Viète ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=\frac{5}{2}\\x_1x_2=\frac{c}{a}=-\frac{3}{2}\end{cases}}\)
Khi đó : A = ( x1 + 2x2 )( x2 + 2x1 ) = x1x2 + 2x12 + 2x22 + 4x1x2
= 5x1x2 + 2( x1 + x2 )2 - 4x1x2
= 2( x1 + x2 )2 + x1x2 = 2.(5/2)2 - 3/2 = 11
Cho phương trình \(x^2-3x+1=0\).Gọi \(x_1\)và \(x_2\)là 2 nghiệm của phương trình.Hãy tính giá trị biểu thức A=\(x^2_1+x^2_2\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=3\\x_1x_2=1\end{matrix}\right.\)
\(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=3^2-2.1=7\)
\(x^2-3x+1=0\)
\(\Delta=\left(-3\right)^2-4=5>0\)
Áp dung hệ thức Viet:
\(x_1+x_2=3\)
\(x_1\cdot x_2=1\)
\(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=3^2-2\cdot1=7\)
Gọi x1, x2 là nghiệm của phương trình x2+2x-4=0. Hãy lập phương trình bậc hai có 2 nghiệm là:
a) x1+2 và x2+2
b) \(\dfrac{1}{x_1+1}\) và \(\dfrac{1}{x_2+1}\)
c) \(\dfrac{x_1}{x_2}\)và \(\dfrac{x_2}{x_1}\)
d) \(x^2_1\)+\(x^2_2\) và \(x_1\)+\(x_2\)
Mọi người giúp mình với. Cần gấp trước 19h15 hôm nay, mình cảm ơn trước ạ.
a: x1+x2=-2; x1x2=-4
x1+x2+2+2=-2+2+2=2
(x1+2)(x2+2)=x1x2+2(x1+x2)+4
=-4+2*(-2)+4=-4
Phương trình cần tìm là x^2-2x-4=0
b: \(\dfrac{1}{x_1+1}+\dfrac{1}{x_2+1}=\dfrac{x_1+x_2+2}{\left(x_1+1\right)\left(x_2+1\right)}\)
\(=\dfrac{x_1+x_2+2}{x_1x_2+\left(x_1+x_2\right)+1}\)
\(=\dfrac{-2+2}{-4+\left(-2\right)+1}=0\)
\(\dfrac{1}{x_1+1}\cdot\dfrac{1}{x_2+1}=\dfrac{1}{x_1x_2+x_1+x_2+1}=\dfrac{1}{-4-2+1}=\dfrac{-1}{5}\)
Phương trình cần tìm sẽ là; x^2-1/5=0
c: \(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=\dfrac{x_1^2+x_2^2}{x_1x_2}=\dfrac{\left(-2\right)^2-2\cdot\left(-4\right)}{-4}=\dfrac{4+8}{-4}=-3\)
x1/x2*x2/x1=1
Phương trình cần tìm sẽ là:
x^2+3x+1=0
Bài 1 : Định m để phương trình bậc hai có nghiệm \(x_1,x_2\) thỏa đẳng thức theo sau
a / x2 + mx + 7 = 0 \(x^2_1+x^2_2=10\)
b/ x2 - 2x + m + 2 = 0 \(x_2-x_1=2\)
c / x2 + ( m - 1 ) x + m + 6 = 0 \(x^2_1+x^2_2=10\)
d / ( m + 1 ) x2 - 2( m - 1 ) x + m - 2 = 0 \(4\left(x_1+x_2\right)=7x_1x_2\)
e / x2 - 4x + m + 3 =0 \(\left|x_1-x_2\right|=2\)
f / x2 - ( m + 3 ) x + 2 ( m +2 ) = 0 \(x_1=2x_2\)
a) △ = \(m^2-28\ge0\)\(\Leftrightarrow\left[{}\begin{matrix}m\ge\sqrt{28}\\m\le-\sqrt{28}\end{matrix}\right.\)
Theo Vi-ét \(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=7\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_1^2+x_2^2+2x_1x_2=m^2\\x_1x_2=7\end{matrix}\right.\)
\(\Rightarrow m^2=24\)\(\Leftrightarrow\left[{}\begin{matrix}m=\sqrt{24}\\m=-\sqrt{24}\end{matrix}\right.\)(không thỏa mãn)
b) △ = \(4-4\left(m+2\right)\ge0\)\(\Leftrightarrow m\le-1\)
Theo Vi-ét \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=m+2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_1^2+x_2^2+2x_1x_2=4\\x_1x_2=m+2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_2-x_1\right)^2+4x_1x_2=4\\x_1x_2=m+2\end{matrix}\right.\)
\(\Rightarrow4+4\left(m+2\right)=4\)\(\Leftrightarrow m=-2\)(thỏa mãn)
c) △ = \(\left(m-1\right)^2-4\left(m+6\right)\)\(\ge0\)\(\Leftrightarrow m^2-2m+1-4m-24\ge0\)
\(\Leftrightarrow m^2-6m-23\ge0\)
\(\Leftrightarrow\left(m-3\right)^2\ge32\)\(\Leftrightarrow\left[{}\begin{matrix}m\ge\sqrt{32}+3\\m\le-\sqrt{32}+3\end{matrix}\right.\)
Theo Vi-ét \(\left\{{}\begin{matrix}x_1+x_2=1-m\\x_1x_2=m+6\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_1^2+x_2^2+2x_1x_2=m^2-2m+1\\x_1x_2=m+6\end{matrix}\right.\)
\(\Rightarrow10+2\left(m+6\right)=m^2-2m+1\)
\(\Leftrightarrow m^2-4m-21=0\)\(\Leftrightarrow\left(m+3\right)\left(m-7\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}m=7\\m=-3\end{matrix}\right.\)\(\Leftrightarrow m=-3\)(thỏa mãn)
mấy câu kia cũng dùng Vi-ét xử tiếp nha
Cho phương trình: x2+3x-1=0
Không giải pt, tính: T = \(\dfrac{3\left(x_1-x_2\right)}{x_1^2x_2+2x_1x_2}\)
Bạn coi lại xem đã viết biểu thức T đúng chưa vậy?