Những câu hỏi liên quan
PB
Xem chi tiết
CT
9 tháng 7 2017 lúc 8:41

Đáp án C

d ∩ Δ = O ( − 1 ; − 2 )

Chọn A(1;5)  ∈ d

Gọi A’ là điểm đối xứng với A qua  Δ : x + 1 = 0

Đường thẳng d’đi qua A và vuông góc với Δ  có phương trình:  − ( y − 5 ) = 0

d’: − y + 5 = 0

d ' ∩ Δ = I ( − 1 ; 5 ) =>I là trung điểm của AA’

Đ △ : A-> A’(–3;5)

Phương trình đường thẳng (d1) đi qua O; A’:  7 2 x + y + 11 2 = 0

Bình luận (0)
TN
Xem chi tiết
AH
6 tháng 5 2021 lúc 12:28

Lời giải:

Do $I\in (x-2y-1=0)$ nên gọi tọa độ của $I$ là $(2a+1,a)$

Đường tròn đi qua 2 điểm $A,B$ nên: $IA^2=IB^2=R^2$

$\Leftrightarrow (2a+1+2)^2+(a-1)^2=(2a+1-2)^2+(a-3)^2=R^2$

$\Rightarrow a=0$ và $R^2=10$

Vậy PTĐTr là: $(x-1)^2+y^2=10$

Bình luận (0)
HP
6 tháng 5 2021 lúc 12:35

Giả sử \(I=\left(2m+1;m\right)\)

Ta có: \(IA=IB\)

\(\Leftrightarrow\sqrt{\left(-2-2m-1\right)^2+\left(1-m\right)^2}=\sqrt{\left(2-2m-1\right)^2+\left(3-m\right)^2}\)

\(\Leftrightarrow4m^2+9+12m+m^2-2m+1=4m^2-4m+1+m^2-6m+9\)

\(\Leftrightarrow5m^2+10m+10=5m^2-10m+10\)

\(\Leftrightarrow m=0\)

\(\Rightarrow I=\left(1;0\right)\)

Bán kính \(R=\sqrt{\left(2-1\right)^2+3^2}=\sqrt{10}\)

Phương trình đường tròn: \(\left(x-1\right)^2+y^2=10\)

Bình luận (0)
H24
Xem chi tiết
NL
28 tháng 6 2021 lúc 20:56

Ta có : Đường thẳng I cách đều 2 đường thẳng d và denta

\(\Rightarrow\dfrac{\left|2x+y-3\right|}{\sqrt{5}}=\dfrac{\left|4x+2y-1\right|}{2\sqrt{5}}\)

\(\Rightarrow2\left|2x+y-3\right|=\left|4x+2y-1\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}4x+2y-6=4x+2y-1\\4x+2y-6=-4x-2y+1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-6=1\left(L\right)\\8x+4y-7=0\end{matrix}\right.\)

\(\Leftrightarrow-\dfrac{8}{7}+\left(-\dfrac{4}{7}\right)+1=0\)

\(\Rightarrow a+b=-\dfrac{8}{7}-\dfrac{4}{7}=-\dfrac{12}{7}\)

Vậy ..

Bình luận (0)
PH
Xem chi tiết
HP
22 tháng 2 2021 lúc 13:21

Đường thẳng đi qua hai điểm A và B nhận \(\overrightarrow{AB}=\left(-2;-4\right)\) làm vecto chỉ phương.

Phương trình đường thẳng AB là \(\dfrac{x-1}{-2}=\dfrac{y-3}{-4}\Leftrightarrow2x-y+1=0\)

\(P=MA+MB\) đạt giá trị nhỏ nhất khi M, A, B thẳng hàng

\(\Leftrightarrow M\) là giao điểm của đường thẳng AB và d

\(\Leftrightarrow M\) có tọa độ nghiệm của hệ \(\left\{{}\begin{matrix}x-2y+3=0\\2x-y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{3}\\y=\dfrac{5}{3}\end{matrix}\right.\)

\(\Rightarrow M\left(\dfrac{1}{3};\dfrac{5}{3}\right)\)

Bình luận (0)
NL
Xem chi tiết
H24
Xem chi tiết
NT
28 tháng 3 2023 lúc 0:26

(C): x^2+y^2+4x-2y-4=0

=>(x+2)^2+(y-1)^2=9

=>I(-2;1); R=3

M thuộc d nên M(a;1-a)

M nằm ngoài (C) nên IM>R

=>IM^2>9

=>2a^2+4a-5>0

MA^2=MB^2=IM^2-IA^2=(a+2)^2+(-a)^2-9=2a^2+4a-5

=>x^2+y^2-2ax+2(a-1)y-6a+6=0(1)

A,B thuộc (C)

=>Tọa độ A,B thỏa mãn phương trình:

 x^2+y^2+4x-2y-4=0(2)

(1)-(2)=(a+2)x-ay+3a-5=0(3)

Tọa độ A,B thỏa mãn (3) nên (3) chính là phương trình đường thẳng AB

(E) tiếp xúc AB nên (E): R1=d(E,AB)

Chu vi của (E) lớn nhất khi R1 lớn nhất

=>d(E;AB) lớn nhất

Gọi H là hình chiếu vuông góc của E lên AB

=>d(E,Δ)=EH<=EK=căn 10/2

Dấu = xảy ra khi H trùng K

=>AB vuông góc EK

vecto EK=(-1/2;3/2), AB có VTCP là (a;a+2)

AB vuông góc EK

=>-1/2a+3/2(a+2)=0

=>a=-3

=>M(-3;4)

Bình luận (0)
H24
Xem chi tiết
DK
18 tháng 4 2021 lúc 16:22

undefined

Bình luận (1)
PB
Xem chi tiết
CT
31 tháng 5 2019 lúc 11:52

Đáp án D.

Bình luận (0)
PB
Xem chi tiết
CT
20 tháng 6 2017 lúc 17:15

Đáp án là D

Bình luận (0)