Những câu hỏi liên quan
LH
Xem chi tiết
NT
18 tháng 2 2022 lúc 15:22

a: \(\left(ac+bd\right)^2+\left(ad-bc\right)^2\)

\(=a^2c^2+b^2d^2-2abcd+a^2d^2-2abcd+b^2c^2\)

\(=a^2c^2+a^2d^2+b^2d^2+b^2c^2\)

\(=\left(c^2+d^2\right)\left(a^2+b^2\right)\)

b: \(\left(ac+bd\right)^2< =\left(a^2+b^2\right)\left(c^2+d^2\right)\)

\(\Leftrightarrow a^2c^2+2abcd+b^2d^2-a^2c^2-a^2d^2-b^2c^2-b^2d^2< =0\)

\(\Leftrightarrow-a^2d^2+2abcd-b^2c^2< =0\)

\(\Leftrightarrow\left(ad-bc\right)^2>=0\)(luôn đúng)

Bình luận (0)
H24
18 tháng 2 2022 lúc 15:28

a) \(\left(ac+bd\right)^2+\left(ad-bc\right)^2\)

\(=a^2c^2+2abcd+b^2d^2+a^2d^2-2adbc+b^2c^2\)

\(=a^2c^2+b^2d^2+a^2d^2+b^2c^2\)

\(=\left(a^2c^2+a^2d^2\right)+\left(b^2d^2+b^2c^2\right)\)

\(=a^2\left(c^2+d^2\right)+b^2\left(c^2+d^2\right)\)

\(=\left(a^2+b^2\right)\left(c^2+d^2\right)\)

b) \(\left(a^2+b^2\right)\left(c^2+d^2\right)-\left(ac+bd\right)^{^2}\)

\(=a^2c^2+a^2d^2+b^2c^2+b^2d^2-a^2c^2-2abcd-b^2d^2\)

\(=a^2d^2+b^2c^2-2abcd\)

\(=\left(ad\right)^2-2ad.bc+\left(bc\right)^2\)

\(=\left(ad-bc\right)^2\ge0\)

\(=\left(ac+bd\right)^2\le\left(a^2+b^2\right)\left(c^2+d^2\right)\)

Bình luận (0)
NK
23 tháng 8 2023 lúc 19:14

dduungg

 

Bình luận (0)
H24
Xem chi tiết
LT
3 tháng 8 2021 lúc 17:28

undefined

hok

tốt 

nha

Bình luận (0)
 Khách vãng lai đã xóa
H24
11 tháng 2 2022 lúc 13:35

a) Ta có 

Bình luận (0)
NK
23 tháng 8 2023 lúc 19:14

lom

 

Bình luận (0)
TA
Xem chi tiết
NK
23 tháng 8 2023 lúc 19:14

dasdfghjkl

 

Bình luận (0)
H24
Xem chi tiết
DP
24 tháng 6 2021 lúc 8:29

45ubyu

Bình luận (0)
 Khách vãng lai đã xóa
HN
Xem chi tiết
TL
2 tháng 8 2016 lúc 12:31

Có: \(-\left(a-b\right)^2\le0\) với mọi x

=> \(-a^2+2ab-b^2\le0\)

=>\(a^2+2ab+b^2\le2a^2+2b^2\) (cộng cả 2 vế với \(2a^2;2b^2\))

=>\(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)

Bình luận (0)
TN
2 tháng 8 2016 lúc 12:32

\(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)

\(\Leftrightarrow\left(a+b\right)^2-2\left(a^2+b^2\right)\le0\)

\(\Leftrightarrow-\left(a^2-2ab+b^2\right)\le0\)

\(\Leftrightarrow-\left(a-b\right)^2\le0\)

dấu "=" xẩy ra khi  và chỉ khi a=b

Bình luận (0)
NA
2 tháng 8 2016 lúc 12:34

ta có : \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)

<=>\(a^2+2ab+b^2\le2a^2+2b^2\)

<=> \(a^2-2ab+b^2\ge0\)

<=> \(\left(a-b\right)^2\ge0\) bất đẳng thức luôn đúng 

=> ĐPCM

Bình luận (0)
H24
Xem chi tiết
H24
Xem chi tiết
MT
Xem chi tiết
TL
13 tháng 9 2015 lúc 12:03

Xét hiệu:

(ac + bd)2 - (a2 + b2)(c2 + d2) = a2c2 + 2acbd + b2d2 - (a2c2 + a2d2 + b2c2 + b2d2) = - a2d2 + 2abcd - b2c2

= - [(ad)2 - 2ad.bc + (bc)2] = - (ad - bc)2 \(\le\) 0 với mọi a; b; c;d

=> bất đẳng thức cần chứng minh

Dấu "=" xảy ra <=> ad = bc 

 

Bình luận (0)
TP
13 tháng 9 2015 lúc 11:56

Đây là BĐT Bu-nhi-a-cốp-xki mà.

Bình luận (0)
H24
Xem chi tiết