Ôn tập toán 8

HN

chứng minh bất dẳng thức :

\(\left(a+b\right)^2\le2\left(a^2+b^2\right)\) 

TL
2 tháng 8 2016 lúc 12:31

Có: \(-\left(a-b\right)^2\le0\) với mọi x

=> \(-a^2+2ab-b^2\le0\)

=>\(a^2+2ab+b^2\le2a^2+2b^2\) (cộng cả 2 vế với \(2a^2;2b^2\))

=>\(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)

Bình luận (0)
TN
2 tháng 8 2016 lúc 12:32

\(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)

\(\Leftrightarrow\left(a+b\right)^2-2\left(a^2+b^2\right)\le0\)

\(\Leftrightarrow-\left(a^2-2ab+b^2\right)\le0\)

\(\Leftrightarrow-\left(a-b\right)^2\le0\)

dấu "=" xẩy ra khi  và chỉ khi a=b

Bình luận (0)
NA
2 tháng 8 2016 lúc 12:34

ta có : \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)

<=>\(a^2+2ab+b^2\le2a^2+2b^2\)

<=> \(a^2-2ab+b^2\ge0\)

<=> \(\left(a-b\right)^2\ge0\) bất đẳng thức luôn đúng 

=> ĐPCM

Bình luận (0)

Các câu hỏi tương tự
LP
Xem chi tiết
VK
Xem chi tiết
PP
Xem chi tiết
DN
Xem chi tiết
ND
Xem chi tiết
NX
Xem chi tiết
DN
Xem chi tiết
LP
Xem chi tiết
H24
Xem chi tiết