Những câu hỏi liên quan
NA
Xem chi tiết
LL
12 tháng 9 2021 lúc 10:53

a) \(A=\left|x-5\right|+\left|x-7\right|=\left|x-5\right|+\left|7-x\right|\ge\left|x-5+7-x\right|=\left|2\right|=2\)

\(minA=2\Leftrightarrow\)\(7\ge x\ge5\)

b) \(B=\left|2x+1\right|+\left|2x-2\right|=\left|2x+1\right|+\left|2-2x\right|\ge\left|2x+1+2-2x\right|=\left|3\right|=3\)

\(minB=3\Leftrightarrow1\ge x\ge-\dfrac{1}{2}\)

Bình luận (1)
H24
Xem chi tiết
TC
12 tháng 7 2021 lúc 17:01

undefined

Bình luận (0)
NT
12 tháng 7 2021 lúc 23:39

Bài 2: 

a) Ta có: \(\left|2x-5\right|\ge0\forall x\)

\(\Leftrightarrow-\left|2x-5\right|\le0\forall x\)

\(\Leftrightarrow-\left|2x-5\right|+3\le3\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)

Bình luận (0)
DL
Xem chi tiết
NP
15 tháng 7 2018 lúc 11:00

Vì \(\left(x-\frac{1}{5}\right)^2\ge0\).Dấu "=" xảy ra khi \(x=\frac{1}{5}\)

\(\Rightarrow A=\left(x-\frac{1}{5}\right)^2+\frac{11}{15}\ge\frac{11}{15}\)

Nên GTNN của A là \(\frac{11}{15}\) xảy ra khi \(x=\frac{1}{5}\)

Bình luận (0)
DL
15 tháng 7 2018 lúc 11:02

Cảm ơn các bạn nhiều nha

Bình luận (0)
TN
Xem chi tiết
NL
13 tháng 8 2020 lúc 14:35

Bài làm:

a) Ta có: \(A=\left|x-\frac{3}{4}\right|\ge0\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left|x-\frac{3}{4}\right|=0\Rightarrow x=\frac{3}{4}\)

Vậy Min(A) = 0 khi x=3/4

b) Ta có: \(B=-\left|x+2020\right|\le0\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left|x+2020\right|=0\Rightarrow x=-2020\)

Vậy Max(B) = 0 khi x = -2020

Bình luận (0)
 Khách vãng lai đã xóa
LD
13 tháng 8 2020 lúc 14:51

A = | x - 3/4 |

\(\left|x-\frac{3}{4}\right|\ge0\forall x\Rightarrow A\ge0\)

Dấu " = " xảy ra <=> x - 3/4 = 0 => x = 3/4

Vậy AMin = 0 , đạt được khi x = 3/4

B = - | x + 2020 |

\(\left|x+2020\right|\ge0\forall x\Rightarrow-\left|x+2020\right|\le0\forall x\)

\(\Rightarrow B\le0\)

Dấu " = " xảy ra <=> x + 2020 = 0 => x = -2020

Vậy BMax = 0, đạt được khi x = -2020

Bình luận (0)
 Khách vãng lai đã xóa
DT
Xem chi tiết
TP
Xem chi tiết
NT
11 tháng 8 2021 lúc 13:32

Ta có : \(\left|x-5\right|+12\ge12\)

\(\Rightarrow\frac{-8}{\left|x-5\right|+12}\ge-\frac{8}{12}=-\frac{2}{3}\)

\(\Rightarrow A=10+\frac{-8}{\left|x-5\right|+12}\ge10-\frac{2}{3}=\frac{28}{3}\)

Dấu ''='' xảy ra khi x = 5

Vậy GTNN của A là 28/3 tại x = 5

Bình luận (0)
 Khách vãng lai đã xóa
LT
11 tháng 8 2021 lúc 13:34

x= 0 

GTNN = 62/7 

mình nghĩ thế

Bình luận (0)
 Khách vãng lai đã xóa
TT
Xem chi tiết
NL
11 tháng 12 2021 lúc 23:02

\(A=\dfrac{x^3-2x^2-15x}{x-5}=\dfrac{x\left(x^2-2x-15\right)}{x-5}=\dfrac{x\left(x+3\right)\left(x-5\right)}{x-5}=x\left(x+3\right)\)

\(A=x^2+3x=\left(x^2+3x+\dfrac{9}{4}\right)-\dfrac{9}{4}=\left(x+\dfrac{3}{2}\right)^2-\dfrac{9}{4}\ge-\dfrac{9}{4}\)

\(A_{min}=-\dfrac{9}{4}\)

Bình luận (0)
AN
Xem chi tiết
H24
6 tháng 10 2019 lúc 10:25

Ta có : \(\left|x-2011\right|\ge0;\left|x-200\right|\ge0\)

            =>|x-2011|+|x-200|\(\ge0\)

            =>A\(\ge0\)

Dấu bằng xảy ra <=> x-2011=0<=>x=2011

                                  x-200=0<=>x=200

Vậy Amin=0<=>x\(\in\left\{2011;200\right\}\)

Bình luận (0)
H24
Xem chi tiết
HQ
12 tháng 7 2021 lúc 17:11

a

C= |x-1| + |x-5|

Do x-1 + x-5 luôn > 0

=> x-1 + x-5 = 0

=> 2x -6 = 0

=> 2x = 6

=> x = 3

Bình luận (0)
 Khách vãng lai đã xóa
HQ
12 tháng 7 2021 lúc 17:13

mình ghi nhầm, lớn hơn hoặc bằng 0 nha

Bình luận (0)
 Khách vãng lai đã xóa
XO
12 tháng 7 2021 lúc 17:14

a) Ta có C = |x - 1| + |x - 5| = |x - 1| + |5 - x| \(\ge\left|x-1+5-x\right|=\left|4\right|=4\)

=> Min C = 4

Dấu "=" xảy ra <=> (x -1)(5 - x) \(\ge0\)

Xét 2 trường hợp

TH1 : \(\hept{\begin{cases}x-1\ge0\\5-x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\le5\end{cases}}\Leftrightarrow1\le x\le5\)

TH2 : \(\hept{\begin{cases}x-1\le0\\5-x\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le1\\x\ge5\end{cases}\Leftrightarrow x\in\varnothing}\)

Vậy Min C = 4 <=> \(1\le x\le5\)

2) a) Ta có \(\left|2x-5\right|\ge0\forall x\Leftrightarrow-\left|2x-5\right|\le0\forall x\)

=> \(C=3-\left|2x-5\right|\le3\forall x\)

=> Max C = 3

Dấu "=" xảy ra <=> 2x - 5 = 0 <=> x = 2,5

Vậy Max C = 3 <=> x = 2,5

b) Ta có \(2\left|x-1\right|\ge0\forall x\Leftrightarrow2\left|x-1\right|+3\ge3\forall x\)

=> D = \(\frac{1}{2\left|x-1\right|+3}\le\frac{1}{3}\forall x\)

=> Max D = 1/3 

Dấu "=" xảy ra <=> x - 1 = 0 <=> x = 1

Vậy Max D = 1/3 <=> x = 1

Bình luận (0)
 Khách vãng lai đã xóa
KV
Xem chi tiết
AI
23 tháng 1 2016 lúc 13:04

D=|x-2010| + |x-2011| + |x-2012|
D=|x-2010| + |x-2011| + |2012-x|
=>D>=|x-2010+2012-x| + |x-2011|
=>D>=|2| + |x-2011|=2 + |x-2011|
Dấu = xảy ra <=> (x-2010)(2012-x)>=0<=>2010<=x<=2012(1)
                           x-2011=0 => x =2011(2)
Từ 1,2 => x=2011
Vậy Bmin=2 khi x=2011
 

 

Bình luận (0)