so sánh 2 tổng sau :
A= 2.1+ 2.3+2.5+........+2. 97+ 2.99
B= 2.2+2.4+2.6+........+2.98 +2.100
so sánh 2 tổng sau:
A=2.1+2.3+2.5+...+2.99
B=2.2+2.4+2.6+...+2.98+1000
cho mình sửa chút là phần cuối +100 nhé
So sánh A và B biết: A=2.1+2.3+3.5+.....+2.97+2.99
B=2.2+2.4+2.6+.....+2.98 +100
A=2(1+3+5+...+97+99)
Số số lẻ trong khoảng từ 1 đến 99 là (99-1):2+1=50(số)
=>Tổng của các số lẻ từ 1 đến 99 là (99+1)*50/2=50*50=2500
=>A=2*2500=5000
B=2(2+4+6+...+98+100)
Số số chẵn trong khoảng từ 2 đến 100 là
(100-2):2+1=50(số)
=>Tổng của các số lẻ từ 2 đến 100 là (100+2)*50/2=50*51=2550
=>B=2*2550=5100
=>A<B
CHO A= 2.12 + 2.32 +2.52 +......+ 2.992
B= 2.22+ 2.42 + ......+ 2.982 + 2.1002
SO SÁNH A VÀ B
AI ĐÚNG MÌNH TICK VÀ GIẢI RA NHÉ
\(\frac{A}{2}=1^2+3^2+...+97^2+99^2\)
\(\frac{B}{2}=2^2+4^2+...+98^2+100^2\)
\(1^2< 2^2;3^2< 4^2;...;97^2< 98^2;99^2< 100^2\)
\(\Rightarrow\frac{A}{2}< \frac{B}{2}\)
\(\Rightarrow A< B\)
Cho \(M=\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{199}{99^2.100^2}\). So sánh \(M\) với \(1\)
Ta có
\(M=\frac{2^2-1^2}{1^2.2^2}+\frac{3^2-2^2}{2^3.3^2}+.....+\frac{100^2-99^2}{99^2.100^2}\)
\(M=1-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+......+\frac{1}{99^2}-\frac{1}{100^2}\)
\(M=1-\frac{1}{100^2}< 1\)
=> M<1
Cho M=\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{199}{99^2.100^2}\) . So sánh M với 1.
\(M=\frac{2^2-1^2}{1^2.2^2}+\frac{3^2-2^2}{2^2.3^2}+\frac{4^2-3^2}{3^2.4^2}+...+\frac{100^2-99^2}{99^2.100^2}\)
\(M=\frac{2^2}{1^2.2^2}-\frac{1^2}{1^2.2^2}+\frac{3^2}{2^2.3^2}-\frac{2^2}{2^2.3^2}+\frac{4^2}{3^2.4^2}-\frac{3^2}{3^2.4^2}+...+\frac{100^2}{99^2.100^2}-\frac{99^2}{99^2.100^2}\)
\(M=\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+...+\frac{1}{99^2}-\frac{1}{100^2}=1-\frac{1}{100^2}
Tính : a, S = 1+4+7+10+13+......+301 b,S= 1+5+9+13+.....+ .... c, S= 1+2-3-4+5+6-7-8+9+10-11-12+..... +41+42-43-44 d, S= 2.1+2.2+2.3+2.4+....+2.99 mình đang can khan cap nho cac ban lam cho minh ti voi
Tính :
\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{199}{99^2.100^2}\)
\(=1-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+...+\frac{1}{99^2}-\frac{1}{100^2}=\frac{9999}{10000}\)
\(=1-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+...+\frac{1}{99^2}-\frac{1}{100^2}=\frac{9999}{10000}\)
Chứng minh rằng ;
\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{199}{99^2.100^2}\) nhỏ hơn 1
So sánh:
a) 430 và 3.2410
b) \(\dfrac{3}{1^2.2^2}\) + \(\dfrac{5}{2^2.3^2}\) + \(\dfrac{7}{3^2.4^2}\) +...+\(\dfrac{19}{9^2.10^2}\) và 1
a) \(3\cdot24^{10}=3\cdot6^{10}\cdot4^{10}=3\cdot3^{10}\cdot2^{10}\cdot2^{20}\)
\(=3^{11}\cdot2^{30}\)
\(4^{30}=2^{30}\cdot2^{30}=2^{30}\cdot4^{15}\)
Ta có \(4^{15}>3^{15}>3^{11}\) nên \(4^{15}>3^{11}\)
Khi đó \(4^{15}\cdot2^{30}>3^{11}\cdot2^{30}\) hay \(4^{30}>3\cdot24^{10}\)
b) \(\dfrac{3}{1^2\cdot2^2}+\dfrac{5}{2^2\cdot3^2}+...+\dfrac{19}{9^2\cdot10^2}\)
\(=\dfrac{3}{1\cdot4}+\dfrac{5}{4\cdot9}+...+\dfrac{19}{81\cdot100}\)
\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{9}+...+\dfrac{1}{81}-\dfrac{1}{100}\)
\(=1-\dfrac{1}{100}=\dfrac{99}{100}< 1\)
Vậy dãy trên nhỏ hơn 1
a/
\(4^{30}=\left(2^2\right)^{30}=2^{60}=2^{30}.2^{30}=\left(2^2\right)^{15}.2^{30}=4^{15}.2^{30}\)
\(3.24^{10}=3.3^{10}.\left(2^3\right)^{10}=3^{11}.2^{30}< 3^{15}.2^{30}\)
\(\Rightarrow4^{30}=4^{15}.2^{30}>3^{15}.2^{30}>3^{11}.2^{30}=3.24^{10}\)
b/
\(=\dfrac{2^2-1^2}{1^2.2^2}+\dfrac{3^2-2^2}{2^2.3^2}+\dfrac{4^2-3^2}{3^2.4^2}+...+\dfrac{10^2-9^2}{9^2.10^2}=\)
\(=1-\dfrac{1}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{3^2}+\dfrac{1}{3^2}-\dfrac{1}{4^2}+...+\dfrac{1}{9^2}-\dfrac{1}{10^2}=\)
\(=1-\dfrac{1}{10^2}< 1\)
a) 4³⁰ = (2²)³⁰ = 2⁶⁰ = 2³⁰.2³⁰ = 1073741824.2³⁰
3.24¹⁰ = 3.(3.2³)¹⁰ = 3.3¹⁰.2³⁰ = 3¹¹.2³⁰ = 177147.2³⁰
Do 1073741824 > 177147
⇒ 1073741824.2³⁰ > 177147.2³⁰
Vậy 4³⁰ > 3.24¹⁰
b) 3/(1².2²) + 5/(2².3²) + ... + 19/(9².10²)
= 1/1² - 1/2² + 1/2² - 1/3² + ... + 1/9² - 1/10²
= 1 - 1/100
= 99/100
Mà 99/100 < 1
⇒ 3/(1².2²) + 5/(2².3²) + 7/(3².4²) + ... + 19/(9².10²) < 1