Những câu hỏi liên quan
H24
Xem chi tiết
H24
25 tháng 3 2020 lúc 22:25

A = (5x - 3y + 1)(7x + 2y - 2) = 0

a) thay y = 2 vào biểu thức, ta có:

<=> (5x - 3.2 + 1)(7x + 2.2 - 2) = 0

<=> (5x - 5)(7x + 2) = 0

<=> 5x - 5 = 0 hoặc 7x + 2 = 0

<=> 5x = 5 hoặc 7x = -2

<=> x = 1 hoặc x = -2/7

b) thay x = -2 vào biểu thức, ta có:

<=> [5.(-2) - 3y + 1][7.(-2) + 2y - 2) = 0

<=> [(-10) - 3y + 1][(-14) + 2y - 2] = 0

<=> (-3y - 9)(2y - 16) = 0

<=> -3y - 9 = 0 hoặc 2y - 16 = 0

<=> -3y = 9 hoặc 2y = 16

<=> y = -3 hoặc y = 8

Bình luận (0)
 Khách vãng lai đã xóa
ML
Xem chi tiết
BB
Xem chi tiết
DD
13 tháng 2 2022 lúc 12:32

undefined

Bình luận (1)
NT
13 tháng 2 2022 lúc 12:28

1.

a.\(\Leftrightarrow7x-5x=3+12\)

\(\Leftrightarrow2x=15\Leftrightarrow x=\dfrac{15}{2}\)

b.\(\Leftrightarrow6x-10-7x-7=2\)

\(\Leftrightarrow x=-19\)

c.\(\Leftrightarrow1-3x=4x-3\)

\(\Leftrightarrow7x=2\Leftrightarrow x=\dfrac{2}{7}\)

d.\(\Leftrightarrow8x^2-4x+12x-6-8x^2-8x-2=12\)

\(\Leftrightarrow-2=12\left(voli\right)\)

Bình luận (3)
PL
Xem chi tiết
PL
Xem chi tiết
NN
22 tháng 3 2020 lúc 21:40

Bài 1)1)\(x^2+5x+6=x^2+3x+2x+6\)=0

=x(x+3)+2(x+3)=(x+2)(x+3)=0

Dễ rồi

2)\(x^2-x-6=0=x^2-3x+2x-6=0\)

=x(x-3)+2(x-3)=0

=(x+2)(x-3)=0

Dễ rồi

3)Phương trình tương đương:\(\left(x^2+1\right)\left(x+2\right)^2=0\)

\(x^2+1>0\)

=>\(\left(x+2\right)^2=0\)

Dễ rồi

4)Phương trình tương đương\(x^2\left(x+1\right)+\left(x+1\right)\)=0

=> \(\left(x^2+1\right)\left(x+1\right)=0Vì\) \(x^2+1>0\)

=>x+1=0

=>..................

5)\(x^2-7x+6=x^2-6x-x+6\) =0

=x(x-6)-(x-6)=0

=(x-1)(x-6)=0

=>.....

6)\(2x^2-3x-5=2x^2+2x-5x-5\)=0

=2x(x+1)-5(x+1)=0

=(2x-5)(x+1)=0

7)\(x^2-3x+4x-12\)=x(x-3)+4(x-3)=(x+4)(x-3)=0

Dễ rồi

Nghỉ đã hôm sau làm mệt

Bình luận (0)
 Khách vãng lai đã xóa
TA
31 tháng 3 2020 lúc 19:23

Phương trình bậc nhất một ẩnPhương trình bậc nhất một ẩnPhương trình bậc nhất một ẩnPhương trình bậc nhất một ẩn

Bình luận (0)
 Khách vãng lai đã xóa
PQ
Xem chi tiết
YN
23 tháng 11 2021 lúc 12:34

Answer:

3.

\(x^2+2y^2+2xy+7x+7y+10=0\)

\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)

\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)

\(\Rightarrow4S^2+28S+4y^2+40=0\)

\(\Rightarrow4S^2+28S+49+4y^2-9=0\)

\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)

\(\Rightarrow-3\le2S+7\le3\)

\(\Rightarrow-10\le2S\le-4\)

\(\Rightarrow-5\le S\le-2\left(2\right)\)

Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)

Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)

Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)

Bình luận (0)
 Khách vãng lai đã xóa
PQ
Xem chi tiết
H24
Xem chi tiết
NH
26 tháng 1 2021 lúc 20:42

Bài này có trong sbt toán 8 tập 2 mà!

Bình luận (7)
TG
26 tháng 1 2021 lúc 20:49

a)  f(x;y) = 0, nhận x = -3 làm nghiệm

<=> [2. (-3) - 3y + 7][3. (-3) + 2y -1] = 0

\(\Leftrightarrow\left[{}\begin{matrix}-6-3y+7=0\\-9+2y-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-3y=0+6-7=-1\\2y=0+9+1=10\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}y=\dfrac{1}{3}\\y=5\end{matrix}\right.\)

Vậy:.........

b)  f(x;y) = 0; nhận y = 2 làm nghiệm.

\(\Leftrightarrow\left(2x-3.2+7\right)\left(3x+2.2-1\right)=0\)

\(\Leftrightarrow\left(2x-6+7\right)\left(3x+4-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-6+7=0\\3x+4-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=0+6-7=-1\\3x=0-4+1=-3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=-1\end{matrix}\right.\)

Vậy...........

 

Bình luận (1)
NH
26 tháng 1 2021 lúc 21:04

limdimlimdimhết nói nổi luôn

Bình luận (1)
HT
Xem chi tiết
NM
26 tháng 2 2016 lúc 16:15

ta có pt đường cao kẻ từ B:(d1) x+3y-5=0 
vì AC _|_ (d1) và AC đi qua C(-1; -2) 
=> pt AC: 3(x+1) -(y+2) =0 
<=> 3x -y + 1=0 
ta có A là giao điểm của AC và đg trung tuyến (d2) kẻ từ A 
=> A là nghiệm của hệ: 
{ 5x+y-9=0 
{ 3x -y + 1=0 
<=> 
x=1 ; y=4 
=> A( 1;4) 

Vì B ∈ (d1) => B(5- 3y; y) 
gọi I là trung điểm BC => I ∈ (d2) 
Vì I là trung điểm BC 
=> 
{ 2xI = xB + xC 
{ 2yI = yB + yC 
<=> 
{ xI= (5-3y-1)/2 = (4-3y)/2 
{ yI= (y -2)/2 

Vì I ∈ (d2) 
=> 5(4-3y)/2 + (y -2)/2 -9 =0 
<=> y= 0 
=> B( 5; 0) 
Vậy A( 1;4) và B( 5; 0)

Bình luận (1)
KO
19 tháng 7 2018 lúc 9:01

Ta có pt đường cao kẻ từ B: (d1) x+3y-5=0
Vì AC _|_ (d1) và AC đi qua C(-1; -2)
=> pt AC: 3(x+1) -(y+2) =0
<=> 3x -y + 1=0
Ta có A là giao điểm của AC và đường trung tuyến (d2) kẻ từ A
=> A là nghiệm của hệ:
{ 5x+y-9=0
{ 3x -y + 1=0
<=>
x=1 ; y=4
=> A( 1;4)

Vì B ∈ (d1) => B(5- 3y; y)
Gọi I là trung điểm BC => I ∈ (d2)
Vì I là trung điểm BC
=>
{ 2xI = xB + xC
{ 2yI = yB + yC
<=>
{ xI= (5-3y-1)/2 = (4-3y)/2
{ yI= (y -2)/2

Vì I ∈ (d2)
=> 5(4-3y)/2 + (y -2)/2 -9 =0
<=> y= 0
=> B( 5; 0)
Vậy A( 1;4) và B( 5; 0)

Bình luận (0)