HT

a) Cho tam giác ABC có C(-1;-2) đường trung tuyến kẻ từ A và đường cao kẻ từ B lần lượt có phương trình 5x+y-9=0 và x+3y-5=0. Tìm tọa độ A, B

b) Cho đường thẳng a: x-2y-3=0 và b: x+y+1=0. Tìm tọa độ điểm M trên a sao cho khoảng cách từ M đến b là  1/ căn 2

NM
26 tháng 2 2016 lúc 16:15

ta có pt đường cao kẻ từ B:(d1) x+3y-5=0 
vì AC _|_ (d1) và AC đi qua C(-1; -2) 
=> pt AC: 3(x+1) -(y+2) =0 
<=> 3x -y + 1=0 
ta có A là giao điểm của AC và đg trung tuyến (d2) kẻ từ A 
=> A là nghiệm của hệ: 
{ 5x+y-9=0 
{ 3x -y + 1=0 
<=> 
x=1 ; y=4 
=> A( 1;4) 

Vì B ∈ (d1) => B(5- 3y; y) 
gọi I là trung điểm BC => I ∈ (d2) 
Vì I là trung điểm BC 
=> 
{ 2xI = xB + xC 
{ 2yI = yB + yC 
<=> 
{ xI= (5-3y-1)/2 = (4-3y)/2 
{ yI= (y -2)/2 

Vì I ∈ (d2) 
=> 5(4-3y)/2 + (y -2)/2 -9 =0 
<=> y= 0 
=> B( 5; 0) 
Vậy A( 1;4) và B( 5; 0)

Bình luận (1)
KO
19 tháng 7 2018 lúc 9:01

Ta có pt đường cao kẻ từ B: (d1) x+3y-5=0
Vì AC _|_ (d1) và AC đi qua C(-1; -2)
=> pt AC: 3(x+1) -(y+2) =0
<=> 3x -y + 1=0
Ta có A là giao điểm của AC và đường trung tuyến (d2) kẻ từ A
=> A là nghiệm của hệ:
{ 5x+y-9=0
{ 3x -y + 1=0
<=>
x=1 ; y=4
=> A( 1;4)

Vì B ∈ (d1) => B(5- 3y; y)
Gọi I là trung điểm BC => I ∈ (d2)
Vì I là trung điểm BC
=>
{ 2xI = xB + xC
{ 2yI = yB + yC
<=>
{ xI= (5-3y-1)/2 = (4-3y)/2
{ yI= (y -2)/2

Vì I ∈ (d2)
=> 5(4-3y)/2 + (y -2)/2 -9 =0
<=> y= 0
=> B( 5; 0)
Vậy A( 1;4) và B( 5; 0)

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
HK
Xem chi tiết
PB
Xem chi tiết