Cho A = 3^1+3^2+3^3+.....3^2012
CMR:A chia hết cho 13
a; ( 2+2^2+2^3+........+2^60) chia hết cho 3; 7; 15
b; (1+3+3^2+3^3+......+3^1991) chia hết cho 13; 41
c; ( 3+3^2+3^3+........+3^1998) chia hết cho 12; 39
cho B=1+3+3^2+...+3^103
chứng tỏ A chia hết cho 4
A chia hết cho 13
\(A=\left(1+3\right)+3^2\left(1+3\right)+...+3^{102}\left(1+3\right)=4\left(1+3^2+...+3^{102}\right)⋮4\)
A không chia hết cho 13 nhé bạn
Cho A = 1 + 3 + 3 ^ 2 + 3 ^ 3 + .....3 ^ 11 .Chứng minh rằng :a, A chia hết cho 13 b,A chia hết cho 40
a) Ta có :
A = 1 + 3 + 32 + .... + 311
A = (1 + 3 + 32) + (33 + 34 + 35) + (36 + 37 + 38) + (39 + 310 + 311)
A = 1 . (1 + 3 + 9) + 33 . (1 + 3 + 9) + 36 . (1 + 3 + 9) + 39 . (1 + 3 + 9)
A = 1. 13 + 33 . 13 + 36 . 13 + 39 . 13
A = 13 . (1 + 33 + 36 + 39) chia hết cho 13 (ĐPCM)
b) Ta có :
A = 1 + 3 + 32 + 33 + ... + 311
A = (1 + 3 + 32 + 33) + (34 + 35 + 36 + 37) + (38 + 39 + 310 + 311)
A = 1 . (1 + 3 + 9 + 27) + 34 . (1 + 3 + 9 + 27) + 38 . (1 + 3 + 9 + 27)
A = 1 . 40 + 34 . 40 + 38 . 40
A = 40 . (1 + 34 + 38) chia hết cho 40 (ĐPCM)
Ủng hộ mk nha !!! ^_^
a) Ta có :
A = 1 + 3 + 32 + .... + 311
A = (1 + 3 + 32) + (33 + 34 + 35) + (36 + 37 + 38) + (39 + 310 + 311)
A = 1 . (1 + 3 + 9) + 33 . (1 + 3 + 9) + 36 . (1 + 3 + 9) + 39 . (1 + 3 + 9)
A = 1. 13 + 33 . 13 + 36 . 13 + 39 . 13
A = 13 . (1 + 33 + 36 + 39) chia hết cho 13 (ĐPCM)
b) Ta có :
A = 1 + 3 + 32 + 33 + ... + 311
A = (1 + 3 + 32 + 33) + (34 + 35 + 36 + 37) + (38 + 39 + 310 + 311)
A = 1 . (1 + 3 + 9 + 27) + 34 . (1 + 3 + 9 + 27) + 38 . (1 + 3 + 9 + 27)
A = 1 . 40 + 34 . 40 + 38 . 40
A = 40 . (1 + 34 + 38) chia hết cho 40 (ĐPCM)
Bài 1:
A=2^1+2^2+2^3+2^4+...
B=3^1+3^2+3^+3^4+...
C=5^1+5^2+5^3+5^4+...
Bài 2:
+ 2^2019 chia hết cho 3 và cho 7
+ 3^2010 chia hết cho 4 và cho 13
+ 5^2010 chia hết cho 6 và cho 31
Bài 1:
$A=2^1+2^2+2^3+2^4$
$2A=2^2+2^3+2^4+2^5$
$\Rightarrow 2A-A=2^5-2^1$
$\Rightarrow A=2^5-1=32-1=31$
----------------------------
$B=3^1+3^2+3^3+3^4$
$3B=3^2+3^3+3^4+3^5$
$\Rightarrow 3B-B = 3^5-3$
$\Rightarrow 2B = 3^5-3\Rightarrow B = \frac{3^5-3}{2}$
--------------------------
$C=5^1+5^2+5^3+5^4$
$5C=5^2+5^3+5^4+5^5$
$\Rightarrow 5C-C=5^5-5$
$\Rightarrow C=\frac{5^5-5}{4}$
Bài 2: Sai đề bạn nhé. Bạn xem lại.
Cho A= 1+3+3^2+ 3^3+...+3^19. Chứng mih A chia hết cho 13 ; chia hết cho 40
Cho A = 3^0+ 3^1+3^2 +.......+3^11
chứng minh rằng A chia hết cho 13 , A chia hết cho 40, A chia hết cho 364
lạnh quá,không muốn nghĩ nữa......Z...z...z
Câu 1 : A=1+3+3^2+3^3+3^4...+3^300+3^301+3^302 có chia hết cho 13 ko
Câu 2: A=6+16+16^2+16^3+...+16^8+16^9 chứng tỏ rằng A vừa chia hết cho 2 vừa chia hết cho 5
Cho A=1+3+32+...+313
chứng minh:
A chia hết cho 13
A chia hết cho 40
cho A = 1+3+3^2 + 3^3 + .....+ 3^11 chứng tỏ a chia hết cho 14
cho b = 3^1 + 3^3 + 3^4 +.... + 3^1991 chứng tỏ rằng B chia hết cho 13 , 41
Tổng 1+2+3+4+........+13+14 chia hết cho mấy ?
Cho A =12+15+21+x . Điều kiện của x để A chia hết cho 3 là
A/ x chia hết cho 3 B/ x chia cho 3 dư 1 C/ x chia cho 3 dư 2 D/ x chia hết cho 7
1.\(A=1+2+...+13+14\)
\(A=\left(1+14\right)+\left(2+13\right)+...+\left(7+8\right)\)
\(A=15\times7=105\)
vậy A chia hết cho các ước của 105