Những câu hỏi liên quan
H9
Xem chi tiết
NT
19 tháng 6 2023 lúc 20:17

a: ĐKXĐ: 5-4x>=0

=>x<=5/4

b: ĐKXĐ: x thuộc R

c: ĐKXĐ: x-2<0

=>x<2

Bình luận (0)
H24
19 tháng 6 2023 lúc 20:18

\(a,ĐK:5-4x\ge0\\ \Rightarrow x\le\dfrac{5}{4}\\ b,ĐK:\left(x+1\right)^2\ge0\left(lđ\right)\)

\(\Rightarrow\) Với mọt giá trị của x

\(c,ĐK:\dfrac{-1}{x-2}\ge0\)

Vì \(-1< 0\)

\(\Rightarrow x-2< 0\)

\(\Rightarrow x< 2\)

 

Bình luận (0)
GH
19 tháng 6 2023 lúc 20:20

a)

Căn thức có nghĩa thì:

 \(5-4x\ge0\\ \Leftrightarrow4x\le5\\ \Rightarrow x\le\dfrac{5}{4}\)

b)

Để căn thức có nghĩa thì:

\(\left(x+1\right)^2\ge0\) (luôn đúng)

Vậy căn thức có nghĩa với mọi giá trị x.

c)

Để căn thức có nghĩa thì:

\(\left\{{}\begin{matrix}-\dfrac{1}{x-2}\ge0\\x-2\ne0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x-2< 0\\x\ne2\end{matrix}\right.\\ \Rightarrow x< 2\)

Bình luận (0)
H24
Xem chi tiết
NT
24 tháng 10 2021 lúc 21:28

a: ĐKXĐ: \(x\ge\dfrac{5}{2}\)

b: ĐKXĐ: \(x< 673\)

c: ĐKXĐ: x>3

Bình luận (1)
H24
Xem chi tiết
NT
27 tháng 7 2021 lúc 13:03

1) ĐKXĐ: \(\left[{}\begin{matrix}x\ge2\\x\le1\end{matrix}\right.\)

2) ĐKXĐ: \(\dfrac{x-6}{x-2}\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2< 0\\x-6\ge0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x< 2\\x\ge6\end{matrix}\right.\)

3) ĐKXĐ: \(\dfrac{2x-4}{5-x}\ge0\)

\(\Leftrightarrow\dfrac{x-2}{x-5}\le0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2\ge0\\x-5< 0\end{matrix}\right.\Leftrightarrow2\le x< 5\)

Bình luận (0)
H24
27 tháng 7 2021 lúc 12:53

GIÚP VỚI Ạ

Bình luận (0)
NC
Xem chi tiết
IM
5 tháng 8 2016 lúc 8:18

a)

\(\sqrt{2x+10}+\frac{1}{x^2+4}\)

Căn thức có nghĩa khi 

\(\begin{cases}2x+10\ge0\\x^2-4\ne0\end{cases}\)

\(\Leftrightarrow\begin{cases}x\ge-5\\\begin{cases}x\ne2\\x\ne-2\end{cases}\end{cases}\)

Vật căn thức có nghĩa khi \(x>-6;x\ne\pm2\)

b)

\(\sqrt{\frac{x^2+1}{x-1}}\)

Căn thưc có nghĩa khi

\(\begin{cases}\left(x^2+1\right)\left(x-1\right)\ge0\\x-1\ne0\end{cases}\)

Mà \(x^2+1\ge1\) => x - 1 >0

\(x+1>0\)

\(\Leftrightarrow x>-1\)

Bình luận (2)
LL
Xem chi tiết
VT
17 tháng 7 2019 lúc 9:42

\(\sqrt{x^2-5}\ge0\Rightarrow x^2-5\ge0\)

\(\Rightarrow x^2\ge5\)

\(\Rightarrow x\ge\sqrt{5}\)

Bình luận (0)
KN
17 tháng 7 2019 lúc 9:50

Vy Thị Hoàng Lan\(=-\sqrt{5}\)vẫn đúng nhé.

Ta có: \(\sqrt{x^2-5}=\sqrt{\left(x+\sqrt{5}\right)\left(x-\sqrt{5}\right)}\)

Để căn thức có nghĩa thì \(x+\sqrt{5}\)và \(x-\sqrt{5}\)cùng dấu

\(TH1:\hept{\begin{cases}x+\sqrt{5}\ge0\\x-\sqrt{5}\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge-\sqrt{5}\\x\ge\sqrt{5}\end{cases}}\Leftrightarrow x\ge\sqrt{5}\)

\(TH1:\hept{\begin{cases}x+\sqrt{5}\le0\\x-\sqrt{5}\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le-\sqrt{5}\\x\le\sqrt{5}\end{cases}}\Leftrightarrow x\le-\sqrt{5}\)

Bình luận (0)

bác pro nào k sai thì chỉ chỗ giùm

Bình luận (0)
MD
Xem chi tiết
TT
29 tháng 8 2020 lúc 10:59

Căn thức cs nghĩa khi \(-x^2\ge0\Leftrightarrow x=0\)

Bình luận (0)
 Khách vãng lai đã xóa
PN
29 tháng 8 2020 lúc 9:37

để căn thức có nghĩa thì \(-x^2\ge0< =>x=0\)

Bình luận (0)
 Khách vãng lai đã xóa
NH
Xem chi tiết
NH
Xem chi tiết
NT
16 tháng 9 2023 lúc 12:42

a: ĐKXĐ: x>=0; x<>25

Sửa đề: \(Q=\dfrac{\sqrt{x}}{\sqrt{x}-5}-\dfrac{10\sqrt{x}}{x-25}-\dfrac{5}{\sqrt{x}+5}\)

\(=\dfrac{x+5\sqrt{x}-10\sqrt{x}-5\sqrt{x}+25}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}=\dfrac{x-10\sqrt{x}+25}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}=\dfrac{\sqrt{x}-5}{\sqrt{x}+5}\)

b: Q=-3/7

=>\(\dfrac{\sqrt{x}-5}{\sqrt{x}+5}=-\dfrac{3}{7}\)

=>7căn x-35=-3căn x-15

=>10căn x=20

=>x=4

c: Q nguyên

=>căn x+5-10 chia hết cho căn x+5

=>căn x+5 thuộc {5;10}

=>căn x thuộc {0;5}

Kết hợp ĐKXĐ, ta được: x=0

Bình luận (1)
NT
16 tháng 9 2023 lúc 12:52

a) \(Q=\dfrac{\sqrt[]{x}}{\sqrt[]{x}-5}-\dfrac{10\sqrt[]{x}}{x-25}-\dfrac{5}{\sqrt[]{x}-5}\left(1\right)\)

Q có nghĩa \(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x-25\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne25\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow Q=\dfrac{\sqrt[]{x}-5}{\sqrt[]{x}-5}-\dfrac{10\sqrt[]{x}}{x-25}\)

\(\Leftrightarrow Q=1-\dfrac{10\sqrt[]{x}}{x-25}\)

\(\Leftrightarrow Q=\dfrac{x+10\sqrt[]{x}-25}{x-25}\)

\(\Leftrightarrow Q=\dfrac{\left(\sqrt[]{x}-5\right)^2}{\left(\sqrt[]{x}-5\right)\left(\sqrt[]{x}+5\right)}=\dfrac{\sqrt[]{x}-5}{\sqrt[]{x}+5}\)

b) \(Q=-\dfrac{3}{7}\)

\(\Leftrightarrow\dfrac{\sqrt[]{x}-5}{\sqrt[]{x}+5}=-\dfrac{3}{7}\)

\(\Leftrightarrow7\left(\sqrt[]{x}-5\right)=-3\left(\sqrt[]{x}+5\right)\)

\(\Leftrightarrow7\sqrt[]{x}-35=-3\sqrt[]{x}-15\)

\(\Leftrightarrow10\sqrt[]{x}=20\)

\(\Leftrightarrow\sqrt[]{x}=2\Leftrightarrow x=4\)

Bình luận (0)
NT
16 tháng 9 2023 lúc 13:01

c) \(Q\in Z\Leftrightarrow\dfrac{\sqrt[]{x}-5}{\sqrt[]{x}+5}\in Z\) \(\left(x\in Z^+\right)\)

\(\Leftrightarrow\sqrt[]{x}-5⋮\sqrt[]{x}+5\)

\(\Leftrightarrow\sqrt[]{x}-5-\left(\sqrt[]{x}-5\right)⋮\sqrt[]{x}-5\)

\(\Leftrightarrow\sqrt[]{x}-5-\sqrt[]{x}-5⋮\sqrt[]{x}+5\)

\(\Leftrightarrow-10⋮\sqrt[]{x}+5\)

\(\Leftrightarrow\sqrt[]{x}+5\in U\left(10\right)=\left\{1;2;5;10\right\}\)

\(\Leftrightarrow x\in\left\{0;25\right\}\)

Bình luận (0)
3N
Xem chi tiết
HQ
4 tháng 7 2021 lúc 16:28

\(\sqrt{\frac{2x-4}{5-x}}\ge0\)

\(< =>\frac{2x-4}{5-x}\ge0;5-x\ne0\)

\(x\ne5\)

\(\frac{2x-4}{5-x}\ge0\)

\(TH1:2x-4\ge0;5-x\ge0\)

\(\hept{\begin{cases}x\ge2\\x\le5\end{cases}< =>2\le x\le}5\)

\(TH2:2x-4< 0;5-x< 0\)

\(\hept{\begin{cases}x< 2\\x>5\end{cases}}\)pt vô no

vậy ddeeer căn thức đc xác định thì\(2\le x\le5\)

Bình luận (0)
 Khách vãng lai đã xóa
XO
4 tháng 7 2021 lúc 16:29

ĐKXĐ : x \(\ne5\)

Để \(\sqrt{\frac{2x-4}{5-x}}\text{ có nghĩa }\Rightarrow\frac{2x-4}{5-x}\ge0\)

TH1 : \(\hept{\begin{cases}2x-4\ge0\\5-x>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge2\\x< 5\end{cases}}\Leftrightarrow2\le x< 5\)

TH2 : \(\hept{\begin{cases}2x-4\le0\\5-x< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le2\\x>5\end{cases}}\Leftrightarrow x\in\varnothing\)

Để căn thức \(\sqrt{\frac{2x-4}{5-x}}\)thì \(2\le x< 5\)

Bình luận (0)
 Khách vãng lai đã xóa