NH

cho biểu thức q=\(\dfrac{\sqrt{x}}{\sqrt{x}-5}-\dfrac{10\sqrt{x}}{x-25}-\dfrac{5}{\sqrt{x}-5}\)

 a) tìm điều kiện của x để biểu thức có nghĩa. rút gọn q

b) tìm x để q=\(\dfrac{-3}{7}\)

c)tìm x nguyên để phân thức q nhân giá trị nguyên

NT
16 tháng 9 2023 lúc 12:42

a: ĐKXĐ: x>=0; x<>25

Sửa đề: \(Q=\dfrac{\sqrt{x}}{\sqrt{x}-5}-\dfrac{10\sqrt{x}}{x-25}-\dfrac{5}{\sqrt{x}+5}\)

\(=\dfrac{x+5\sqrt{x}-10\sqrt{x}-5\sqrt{x}+25}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}=\dfrac{x-10\sqrt{x}+25}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}=\dfrac{\sqrt{x}-5}{\sqrt{x}+5}\)

b: Q=-3/7

=>\(\dfrac{\sqrt{x}-5}{\sqrt{x}+5}=-\dfrac{3}{7}\)

=>7căn x-35=-3căn x-15

=>10căn x=20

=>x=4

c: Q nguyên

=>căn x+5-10 chia hết cho căn x+5

=>căn x+5 thuộc {5;10}

=>căn x thuộc {0;5}

Kết hợp ĐKXĐ, ta được: x=0

Bình luận (1)
NT
16 tháng 9 2023 lúc 12:52

a) \(Q=\dfrac{\sqrt[]{x}}{\sqrt[]{x}-5}-\dfrac{10\sqrt[]{x}}{x-25}-\dfrac{5}{\sqrt[]{x}-5}\left(1\right)\)

Q có nghĩa \(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x-25\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne25\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow Q=\dfrac{\sqrt[]{x}-5}{\sqrt[]{x}-5}-\dfrac{10\sqrt[]{x}}{x-25}\)

\(\Leftrightarrow Q=1-\dfrac{10\sqrt[]{x}}{x-25}\)

\(\Leftrightarrow Q=\dfrac{x+10\sqrt[]{x}-25}{x-25}\)

\(\Leftrightarrow Q=\dfrac{\left(\sqrt[]{x}-5\right)^2}{\left(\sqrt[]{x}-5\right)\left(\sqrt[]{x}+5\right)}=\dfrac{\sqrt[]{x}-5}{\sqrt[]{x}+5}\)

b) \(Q=-\dfrac{3}{7}\)

\(\Leftrightarrow\dfrac{\sqrt[]{x}-5}{\sqrt[]{x}+5}=-\dfrac{3}{7}\)

\(\Leftrightarrow7\left(\sqrt[]{x}-5\right)=-3\left(\sqrt[]{x}+5\right)\)

\(\Leftrightarrow7\sqrt[]{x}-35=-3\sqrt[]{x}-15\)

\(\Leftrightarrow10\sqrt[]{x}=20\)

\(\Leftrightarrow\sqrt[]{x}=2\Leftrightarrow x=4\)

Bình luận (0)
NT
16 tháng 9 2023 lúc 13:01

c) \(Q\in Z\Leftrightarrow\dfrac{\sqrt[]{x}-5}{\sqrt[]{x}+5}\in Z\) \(\left(x\in Z^+\right)\)

\(\Leftrightarrow\sqrt[]{x}-5⋮\sqrt[]{x}+5\)

\(\Leftrightarrow\sqrt[]{x}-5-\left(\sqrt[]{x}-5\right)⋮\sqrt[]{x}-5\)

\(\Leftrightarrow\sqrt[]{x}-5-\sqrt[]{x}-5⋮\sqrt[]{x}+5\)

\(\Leftrightarrow-10⋮\sqrt[]{x}+5\)

\(\Leftrightarrow\sqrt[]{x}+5\in U\left(10\right)=\left\{1;2;5;10\right\}\)

\(\Leftrightarrow x\in\left\{0;25\right\}\)

Bình luận (0)