\(2^{x+1}\cdot2^y=12^x\)
tìm \(x\inℕ,\)biết:
\(2\cdot2^2+3\cdot2^3+4\cdot2^4+....+x\cdot2^x=2^{x+1}\)
1 ) Tìm x biết
a) \(x^{10}\cdot\left(x^2\right)^{10}\cdot\left(x^3\right)^{10}\cdot...\cdot\left(x^{10}\right)^{10}\)
b)\(\frac{1}{2}\cdot2^x+4\cdot2^x=9\cdot2^5\)
c)\(3\cdot2^{x+2}=5\cdot2^3\)
tìm x biết
1)\(-\frac{2}{3}\cdot\left(x-\frac{1}{4}\right)=\frac{1}{3}\cdot\left(2x-1\right)\)
2)\(\frac{1}{5}\cdot2^x+\frac{1}{5}\cdot2^{x+1}=\frac{1}{5}\cdot2^7+\frac{1}{3}\cdot2^8\)
\(^{2^{x+1}\cdot2^1+4\cdot2^x}\)
tìm x
1, \(\frac{1}{3}x+\frac{2}{5}\left(x-1\right)=0\)
2, \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{49}{50}\)
3, \(x-\left(\frac{11}{12}-x\right)=x-\frac{3}{4}\)
4, \(-29-4\cdot|3x+6|=-41\)
5, \(\frac{1}{5}\cdot2x+\frac{1}{3}\cdot2^{x+1}=\frac{1}{5}\cdot2^7+\frac{1}{3}\cdot2^8\)
MỌI NGƯỜI LÀM ĐƯỢC CÂU NÀO THÌ LÀM GIÚP EM Ạ
\(\frac{1}{3}x+\frac{2}{5}\left(x-1\right)=0\)
\(\Leftrightarrow\frac{1}{3}x+\frac{2}{5}x-\frac{2}{5}=0\)
\(\Leftrightarrow\frac{1}{3}x+\frac{2}{5}x=0+\frac{2}{5}\)
\(\Leftrightarrow x\left(\frac{1}{3}+\frac{2}{5}\right)=\frac{2}{5}\)
\(\Leftrightarrow x\left(\frac{5}{15}+\frac{6}{15}\right)=\frac{2}{5}\)
\(\Leftrightarrow\frac{11}{15}x=\frac{2}{5}\)
\(\Leftrightarrow x=\frac{2}{5}\div\frac{11}{15}\)
\(\Leftrightarrow x=\frac{6}{11}\)
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{49}{50}\)
\(\Leftrightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{49}{50}\)
\(\Leftrightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{49}{50}\)
\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{49}{50}\)
\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{49}{50}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{49}{50}\div2\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{49}{50}\times\frac{1}{2}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{49}{100}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{49}{100}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{50}{100}-\frac{49}{100}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{100}\)
\(\Leftrightarrow x+1=100\)
\(\Leftrightarrow x=100-1\)
\(\Leftrightarrow x=99\)
\(x-\left(\frac{11}{12}+x\right)=x-\frac{3}{4}\)
\(\Leftrightarrow x-\frac{11}{12}-x=x-\frac{3}{4}\)
\(\Leftrightarrow-\frac{11}{12}=x-\frac{3}{4}\)
\(\Leftrightarrow x=\frac{-11}{12}+\frac{3}{4}\)
\(\Leftrightarrow x=\frac{-11}{12}+\frac{9}{12}\)
\(\Leftrightarrow x=\frac{-2}{12}=\frac{-1}{6}\)
Cho phương trình : \(x^2-2\left(m+1\right)x-12=0\)
Tìm m để phương trình có nghiệm x1, x2 thỏa mãn : \(x_1^2-x_2^2-7\cdot2\cdot\left(m+1\right)=0\)
\(ac=-12< 0\) nên pt luôn có 2 nghiệm pb trái dấu
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=-12\end{matrix}\right.\)
\(x_1^2-x_2^2-14\left(m+1\right)=0\)
\(\Leftrightarrow\left(x_1-x_2\right)\left(x_1+x_2\right)-14\left(m+1\right)=0\)
\(\Leftrightarrow\left(x_1-x_2\right).2\left(m+1\right)-14\left(m+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}m=-1\\x_1-x_2=7\left(1\right)\end{matrix}\right.\)
Xét (1), kết hợp với Viet ta được: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1-x_2=7\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{2m+9}{2}\\x_2=\dfrac{2m-5}{2}\end{matrix}\right.\)
Thế vào \(x_1x_2=-12\Leftrightarrow\left(\dfrac{2m+9}{2}\right)\left(\dfrac{2m-5}{2}\right)=-12\)
\(\Leftrightarrow4m^2+8m+3=0\Rightarrow\left[{}\begin{matrix}m=-\dfrac{3}{2}\\m=-\dfrac{1}{2}\end{matrix}\right.\)
Vậy \(m=\left\{-1;-\dfrac{3}{2};-\dfrac{1}{2}\right\}\)
Tìm x, biết: \(\frac{1}{2}\cdot2^x+4\cdot2^x-288=0\)
\(\Rightarrow2^x\left(\frac{1}{2}+4\right)=288\Rightarrow2^x.\frac{9}{2}=288\Rightarrow2^x=64=2^6\Rightarrow x=6\)
\(\)\(\left(\frac{1}{2}+4\right).2^x=288\)
\(\frac{9}{2}.2^x=288\)
\(2^x=64\)
\(2^x=2^6\)
=> x=6
Bài 1 Tìm số tự nhiên x biết
a) \(2^{3x+2}=4^{x+5}\)
b) \(2^x+2^x+4=272\)
c) \(\dfrac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5}=\dfrac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5}=2^x\)
d) \(2\cdot2^2+3\cdot2^2+4\cdot2^2+5\cdot2^2+...+x\cdot2^x=2^{x+10}\)
a) \(2^{3x+2}=4^{x+5}\Leftrightarrow2^{3x+2}=2^{2\left(x+5\right)}\Leftrightarrow2^{3x+2}=2^{2x+10}\)
\(\Rightarrow3x+2=2x+10\Leftrightarrow3x+2-2x-10\)
\(\Leftrightarrow x-8=0\Leftrightarrow x=8\) vậy \(x=8\)
Tím số nguyên x, biết :
\(\frac{\left(1\cdot2+2\cdot3+3\cdot4+...+98\cdot99\right)\cdot x}{26950}=12\frac{6}{7}\text{ : }\frac{-3}{2}\)
Tính tổng dãy dấu ngoặc trước
Đặt \(S=1\cdot2+2\cdot3+3\cdot4+...+98\cdot99\)
\(3S=1\cdot2\cdot3+2\cdot3\cdot(4-1)+...+98\cdot99\cdot(100-97)\)
\(3S=1\cdot2\cdot3+2\cdot3\cdot4-1\cdot3\cdot4+...+98\cdot99\cdot100-97\cdot98\cdot99\)
\(3S=98\cdot99\cdot100\Rightarrow S=\frac{1}{3}\cdot98\cdot99\cdot100\)
Thay vào đề bài,ta có :
\(\frac{\frac{1}{3}\cdot98\cdot99\cdot100\cdot x}{26950}=12\frac{6}{7}:\frac{-3}{2}\)
\(\Leftrightarrow\frac{\frac{1}{3}\cdot98\cdot99\cdot100\cdot x}{26950}=12\frac{6}{7}\cdot\frac{2}{-3}\)
\(\Leftrightarrow\frac{\frac{1}{3}\cdot98\cdot99\cdot100\cdot x}{26950}=\frac{90}{7}\cdot\frac{2}{-3}\)
\(\Leftrightarrow\frac{\frac{1}{3}\cdot98\cdot99\cdot100\cdot x}{26950}=\frac{-30}{7}\cdot\frac{2}{-1}\)
\(\Leftrightarrow\frac{\frac{1}{3}\cdot98\cdot99\cdot100\cdot x}{26950}=\frac{-60}{-7}=\frac{60}{7}\)
\(\Leftrightarrow\frac{1}{3}\cdot98\cdot99\cdot100\cdot x=\frac{60}{7}\cdot26950\)
\(\Leftrightarrow\frac{1}{3}\cdot98\cdot99\cdot100\cdot x=231000\)
\(\Leftrightarrow323400\cdot x=231000\)
\(\Leftrightarrow x=231000:323400=\frac{5}{7}\)
Tử thần sai từ dòng:
\(\frac{\frac{1}{3}.98.99.100.x}{26950}=\frac{30}{7}.\frac{2}{-1}\Leftrightarrow12x=-\frac{60}{7}\Leftrightarrow x=\frac{-5}{7}\)