bạn chơi free đúng ko
\(2^y=12^x:2^{x+1}\)
=> \(2^y=12^x:2^x.2=6^x.2\)
=> \(2^y:2=6^x=2^{y-1}\)
Em xem lại đề nhé
bạn chơi free đúng ko
\(2^y=12^x:2^{x+1}\)
=> \(2^y=12^x:2^x.2=6^x.2\)
=> \(2^y:2=6^x=2^{y-1}\)
Em xem lại đề nhé
tìm \(x\inℕ,\)biết:
\(2\cdot2^2+3\cdot2^3+4\cdot2^4+....+x\cdot2^x=2^{x+1}\)
\(^{2^{x+1}\cdot2^1+4\cdot2^x}\)
Tìm x, biết: \(\frac{1}{2}\cdot2^x+4\cdot2^x-288=0\)
TÌM X , Y , Z \(\inℕ^∗\) SAO CHO
\(1+5^X=2^Y+5\cdot2^Z\)
GIẢI NHANH GIÚP MÌNH NHA , XIN CẢM ƠN!!!!!!1
1. Tính:
a)\(81^3:3^5\)
b)\(16\cdot2^4\cdot\frac{1}{32}\cdot2^3\)
2. Tìm x:
a) \(\left(x-1\right)^5=32\)
b) \(\left(2^3:4\right)\cdot2^{\left(x+1\right)}=64\)
TÌM X , Y , Z \(\inℕ^∗\)SAO CHO :
\(1+5^X=2^Y+5\cdot2^Z\)
GIẢI NHANH GIÚP MÌNH NHA , XIN CẢM ƠN!!!!!!
cho mik hỏi \(\left(x+2\right)\cdot4+\left(y-1\right)\cdot3=\left(z-1\right)\cdot2\)
và \(x+y+z=15\)cảm ơn nhiều mik cần gắp lắm :)
câu 1) \(A=\frac{x+2\cdot y-3\cdot z}{x-2\cdot y+3\cdot z}\) Tính A biết x : y : z = 5 : 4 : 3
Câu 2) cho a,b,c khác 0 và \(\frac{a\cdot b}{a+b}\)= \(\frac{b\cdot c}{b+c}\)= \(\frac{c\cdot a}{c+a}\)
Tính A = \(\frac{a\cdot b^2+b\cdot c^2+c\cdot a^2}{a^3+b^3+c^3}\)
câu 3 ) Tìm x để biểu thức A = \(\frac{2016\cdot\left|x-2\right|+2018}{\left|x-2\right|+1}\) đạt giá trị lớn nhất
câu 4) Cho A = \(2\cdot2^2+3\cdot2^3+4\cdot2^4+5\cdot2^5+.......+20.2^{20}\) so sánh A với \(^{2^{25}}\)
Các bạn giúp mình với mai mình đi thi rồi, các bạn nhớ viết rõ cách làm ra nhé cảm ơn đã giúp mình. Thank
Bài 1: Tính
a. \(\left(1+\frac{1}{1\cdot3}\right)\cdot\left(1+\frac{1}{2\cdot4}\right)\cdot\left(1+\frac{1}{3\cdot5}\right)+\left(1+\frac{1}{4\cdot6}\right).....\left(1+\frac{1}{99\cdot101}\right)\)
b. \(\left[\sqrt{0,64}+\sqrt{0,0001}-\sqrt{\left(-0,5\right)^2}\right]\div\left[3\cdot\sqrt{\left(0,04\right)^2}-\sqrt{\left(-2\right)^4}\right]\)
c. \(\frac{5.4^{15}\cdot9^9-4.3^{20}\cdot8^9}{5\cdot2^9\cdot6^{19}-7\cdot2^{29}\cdot27^6}-\frac{2^{19}\cdot6^{15}-7\cdot6^{10}\cdot2^{20}\cdot3^6}{9\cdot6^{19}\cdot2^9-4\cdot3^{17}\cdot2^{26}}+0,\left(6\right)\)
Bài 2: Tìm x, y, z biết :
a. \(\left(x-10\right)^{1+x}=\left(x-10\right)^{x+2009}\left(x\in Z\right)\)
b. \(\left|x-2007\right|+\left|x-2008\right|+\left|y-2009\right|+\left|x-2010\right|=3\left(x,y\in N\right)\)
c. \(25-y^2=8\left(x-2009\right)^2\left(x,y\in Z\right)\)
d. \(2008\left(x-4\right)^2+2009\left|x^2-16\right|+\left(y+1\right)^2\le0\)
e. \(2x=3y\) ; \(4z=5x\) và \(3y^2-z^2=-33\)
Bài 3: Chứng minh rằng
a. \(1-\frac{1}{2^2}-\frac{1}{3^2}-\frac{1}{4^2}-...-\frac{1}{2009^2}>\frac{1}{2009}\)
b. \(\left[75\cdot\left(4^{2008}+4^{2007}+4^{2006}+...+4+1\right)+25\right]⋮100\)
Bài 4:
a. Tìm giá trị nhỏ nhất của biểu thức : \(M=\left(x^2+2\right)+\left|x+y-2009\right|+2005\)
b. So sánh: \(31^{11}\) và \(\left(-17\right)^{14}\)
c. So sánh: \(\left(\frac{9}{11}-0,81\right)^{2012}\) và \(\frac{1}{10^{4024}}\)