Những câu hỏi liên quan
TT
Xem chi tiết
MT
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
HT
Xem chi tiết

\(\left(x^2-x+1\right)\left(xy+y^2\right)=3x-1\left(1\right)\)

\(3x-1⋮x^2-x+1\)

zì \(lim\left(x\rightarrow\infty\right)\frac{3x-1}{x^2-x+1}=0\)

zà thấy x=2 thỏa mãn ,=> x=1

thay zô 1 ta có

\(1\left(y+y^2\right)=2=>y^2+y-2=0=>\orbr{\begin{cases}y=1\\y=-2\end{cases}}\)

zậy \(\left(x,y\right)\in\left\{\left(1,1\right)\left(1,-2\right)\right\}\)

Bình luận (0)
 Khách vãng lai đã xóa
KP
Xem chi tiết
KR
Xem chi tiết
HP
21 tháng 1 2021 lúc 13:11

a, \(\left|4x-8\right|\le8\)

\(\Leftrightarrow\left(\left|4x-8\right|\right)^2\le64\)

\(\Leftrightarrow16x^2-64x+64\le64\)

\(\Leftrightarrow16x^2-64x\le0\)

\(\Leftrightarrow16x\left(x-4\right)\le0\)

\(\Leftrightarrow0\le x\le4\)

b, \(\left|x-5\right|\le4\)

\(\Leftrightarrow\left(\left|x-5\right|\right)^2\le16\)

\(\Leftrightarrow x^2-10x+25\le16\)

\(\Leftrightarrow x^2-10x+9\le0\)

\(\Leftrightarrow1\le x\le9\)

\(\Rightarrow x\in\left\{1;2;3;4;5;6;7;8;9\right\}\)

c, \(\left|2x+1\right|< 3x\)

TH1: \(x\ge-\dfrac{1}{2}\)

\(\left|2x+1\right|< 3x\)

\(\Leftrightarrow2x+1< 3x\)

\(\Leftrightarrow x>1\)

\(\Rightarrow\left\{{}\begin{matrix}x\in Z\\x\in\left(1;2018\right)\end{matrix}\right.\)

TH2: \(x< -\dfrac{1}{2}\)

\(\left|2x+1\right|< 3x\)

\(\Leftrightarrow-2x-1< 3x\)

\(\Leftrightarrow x>-\dfrac{1}{5}\left(l\right)\)

Vậy \(\left\{{}\begin{matrix}x\in Z\\x\in\left(1;2018\right)\end{matrix}\right.\)

Bình luận (0)
HP
21 tháng 1 2021 lúc 13:15

d, \(\left|x+1\right|+\left|x\right|< 3\)

\(\Leftrightarrow x+1+x+2\left|x^2+x\right|< 9\)

\(\Leftrightarrow\left|x^2+x\right|< 4-x\)

Xét hai trường hợp để phá dấu giá trị tuyệt đối

e, Tương tự câu d

Bình luận (0)
LL
Xem chi tiết
KN
10 tháng 7 2020 lúc 17:34

Ta có :

\(\left(x^2-x+1\right)\left(y^2+xy\right)=3x+1\left(∗\right)\Rightarrow x^2-x+1|3x+1\Rightarrow x^2-x+1\le\left|3x-1\right|\)

TH1 :

\(x\ge\frac{1}{3}\Leftrightarrow x^2-x+1\le3x-1\Leftrightarrow x^2-4x+2\le0\Leftrightarrow2-\sqrt{2}\le x\le2+\sqrt{2}\left(tm\right)\)

Mà \(x\in Z\Rightarrow x\in\left\{1;2;3\right\}\)

TH2 :

\(x\le\frac{1}{3}\Leftrightarrow x^2-x+1\le-3x+1\Leftrightarrow x^2+2x\le0\Leftrightarrow-2\le x\le0\left(tm\right)\)

Mà \(x\in Z\Rightarrow x\in\left\{-2;-1;0\right\}\)

\(\Rightarrow x\in\left\{-2;-1;0;1;2;3\right\}\)

+) \(\forall x=−1⇒\left(∗\right)⇔3(y^2-y)=−4⇔y^2−y=−\frac{4}{3}\left(vn\right)\)

+) \(\forall x=0⇒\left(∗\right)⇔y^2=−1\left(vn\right)\)

+) \(\forall x=1\Rightarrow\left(∗\right)\Leftrightarrow y^2+y=2\Leftrightarrow\orbr{\begin{cases}y=1\\y=-2\end{cases}\left(tm\right)}\)

Với x = 2 ; x = 3 ... ( vn ) ( Làm tương tự như trên:v )

Vậy các nghiệm nguyên của pt đã cho là \(\left(x;y\right)=\left\{\left(-2;1\right);\left(1;1\right);\left(1;-2\right)\right\}\)

Bình luận (0)
 Khách vãng lai đã xóa
LL
13 tháng 7 2020 lúc 16:01

@LetHateHim : Đề bài là 3x- 1 mà bạn

Bình luận (0)
 Khách vãng lai đã xóa