Những câu hỏi liên quan
H24
Xem chi tiết
NT
19 tháng 3 2021 lúc 20:01

a) Xét ΔABE vuông tại E và ΔACF vuông tại F có 

\(\widehat{FAC}\) chung

Do đó: ΔABE∼ΔACF(g-g)

b) Ta có: ΔABE∼ΔACF(cmt)

nên \(\dfrac{AB}{AC}=\dfrac{AE}{AF}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AF\cdot AB=AE\cdot AC\)(đpcm)

c) Ta có: \(AF\cdot AB=AE\cdot AC\)(cmt)

nên \(\dfrac{AF}{AC}=\dfrac{AE}{AB}\)

Xét ΔAEF và ΔABC có 

\(\dfrac{AF}{AC}=\dfrac{AE}{AB}\)(cmt)

\(\widehat{BAC}\) chung

Do đó: ΔAEF∼ΔABC(c-g-c)

d) Xét ΔEBC vuông tại E và ΔDAC vuông tại D có

\(\widehat{DCA}\) chung

Do đó: ΔEBC∼ΔDAC(g-g)

Bình luận (2)
CT
Xem chi tiết
LD
Xem chi tiết
TC
5 tháng 11 2023 lúc 8:55

Ta có:

\(\dfrac{tanA}{tan^3B}=\dfrac{tanA}{tanB}.\dfrac{1}{tan^2B}=\dfrac{\dfrac{sinA}{cosA}}{\dfrac{sinB}{cosB}}.\dfrac{cos^2B}{sin^2B}\)

\(=\dfrac{sinA}{sinB}.\dfrac{cosB}{cosA}.\dfrac{cos^2B}{sin^2B}\)

\(=\dfrac{a}{b}.\dfrac{\dfrac{a^2+c^2-b^2}{2ac}}{\dfrac{b^2+c^2-a^2}{2bc}}.\dfrac{\left(\dfrac{a^2+c^2-b^2}{2ac}\right)^2}{1-\left(\dfrac{a^2+c^2-b^2}{2ac}\right)^2}\)

\(=\dfrac{a^2+c^2-b^2}{b^2+c^2-a^2}.\dfrac{\left(a^2+c^2-b^2\right)^2}{\left(2ac\right)^2-\left(a^2+c^2-b^2\right)^2}\)

\(=\dfrac{\left(a^2+c^2-b^2\right)^3}{b^2+c^2-a^2}.\dfrac{1}{\left[\left(a+c\right)^2-b^2\right]\left[b^2-\left(a-c\right)^2\right]}\)

\(=\dfrac{\left(a^2+c^2-b^2\right)^3}{b^2+c^2-a^2}.\dfrac{1}{\left(a+b+c\right)\left(a+c-b\right)\left(b+c-a\right)\left(a+b-c\right)}\)

Biến đổi tương tự, ta có BĐT tương đương với BĐT đã cho:

\(\dfrac{\left(a^2+c^2-b^2\right)^3}{b^2+c^2-a^2}+\dfrac{\left(a^2+b^2-c^2\right)^3}{a^2+c^2-b^2}+\dfrac{\left(b^2+c^2-a^2\right)^3}{a^2+b^2-c^2}\ge\left(a+b+c\right)\left(b+c-a\right)\left(a+c-b\right)\left(a+b-c\right)\)

Ta có BĐT phụ sau:

\(\dfrac{x^3}{y}+\dfrac{y^3}{z}+\dfrac{z^3}{x}\ge xy+yz+xz\left(\text{*}\right)\) với \(x,y,z>0\)

Chứng minh:

Áp dụng BĐT cộng mẫu:

\(\dfrac{x^3}{y}+\dfrac{y^3}{z}+\dfrac{z^3}{x}=\dfrac{x^4}{xy}+\dfrac{y^4}{yz}+\dfrac{z^4}{xz}\)

\(\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{xy+yz+xz}\ge\dfrac{\left(xy+yz+xz\right)^2}{xy+yz+xz}=xy+yz+xz\)(đpcm)

Đẳng thức xảy ra khi và chỉ khi \(x=y=z\)

Áp dụng BĐT \(\left(\text{*}\right)\), với đk \(\Delta ABC\) có ba góc nhọn, ta có:

\(\dfrac{\left(a^2+c^2-b^2\right)^3}{b^2+c^2-a^2}+\dfrac{\left(a^2+b^2-c^2\right)^3}{a^2+c^2-b^2}+\dfrac{\left(b^2+c^2-a^2\right)^3}{a^2+b^2-c^2}\ge\left(a^2+c^2-b^2\right)\left(a^2+b^2-c^2\right)+\left(a^2+b^2-c^2\right)\left(b^2+c^2-a^2\right)+\left(b^2+c^2-a^2\right)\left(a^2+c^2-b^2\right)\)

Ta chứng minh được:

\(\left(a^2+c^2-b^2\right)\left(a^2+b^2-c^2\right)+\left(a^2+b^2-c^2\right)\left(b^2+c^2-a^2\right)+\left(b^2+c^2-a^2\right)\left(a^2+c^2-b^2\right)=\left(a+b+c\right)\left(b+c-a\right)\left(a+c-b\right)\left(a+b-c\right)\)

\(=-a^4-b^4-c^4+2a^2b^2+2b^2c^2+2a^2c^2\)

Vậy ta có BĐT cần chứng minh, đẳng thức xảy ra khi và chỉ khi \(\widehat{A}=\widehat{B}=\widehat{C}=60^0\)

Bình luận (0)
H24
Xem chi tiết
H24
7 tháng 3 2021 lúc 20:27

Xét ∆HAF và ∆HCD:

\(\widehat{HFA}=\widehat{HDC}=90^o\)

\(\widehat{AHF}=\widehat{CHD}\) (2 góc đối đỉnh)

=> ∆HAF~∆HCD(g.g)

b) Xét ∆AHB có: M là trung điểm của AH 

                           N là trung điểm của HB

=> MN là đường trung bình của ∆AHB

=>MN//AB và \(MN=\dfrac{1}{2}AB\)

=> \(\widehat{HMN}=\widehat{BAM}\) (2 góc đồng vị)

Tương tự ở ∆AHC ta được: \(MP=\dfrac{1}{2}AC\)  và \(\widehat{HMP}=\widehat{CAM}\)

Ta có: \(\widehat{BAC}=\widehat{BAD}+\widehat{CAD}=\widehat{NMH}+\widehat{PMH}=\widehat{NMP}\)

            \(\dfrac{MN}{MP}=\dfrac{\dfrac{1}{2}AB}{\dfrac{1}{2}AC}=\dfrac{AB}{AC}\)

Xét ∆MNP và ∆ABC có:

\(\widehat{NMP}=\widehat{BAC}\left(cmt\right)\)

\(\dfrac{MN}{MP}=\dfrac{AB}{AC}\left(cmt\right)\)

=> ∆MNP~∆ABC

Ta có: \(\dfrac{S_{MNP}}{S_{ABC}}=\left(\dfrac{MN}{AB}\right)^2=\left(\dfrac{1}{2}\right)^2=\dfrac{1}{4}\)

=> \(S_{MNP}=\dfrac{1}{4}S_{ABC}\)

Bình luận (0)
PH
Xem chi tiết
ND
9 tháng 7 2017 lúc 16:16

A B C I K M

Xét \(\Delta\)BKC: ^BKC=900. M là trung điểm của BC => MB=MK=MC (1) (Tính chất đường trung tuyến của tam giác vuông)

Xét \(\Delta\)CIB: ^CIB=900. M là trung điểm của BC => MC=MI=MB (2)

Từ (1) và (2) => MB=MK=MI=MC

=> \(\Delta\)MIK cân tại M (đpcm)

Bình luận (0)
PH
9 tháng 7 2017 lúc 16:30

cám ơn bạn

Bình luận (0)
PH
11 tháng 7 2017 lúc 9:44

giúp mình CM \(\widehat{KIB}\)  = \(\widehat{MCK}\)

Bình luận (0)
MN
Xem chi tiết
TD
Xem chi tiết
NH
20 tháng 9 2021 lúc 7:52

hứng minh được AEB \backsim AFC, từ đó có \dfrac{AE}{AB} = \dfrac{AF}{AC}t.AE phần AB=AF phần AC

Ta có: \Delta AEF\backsim\Delta ABC (g.c.g)
b, từ câu a) suy ra EF phần BC=AE phần AB=cos A=cos60 độ =1 phần 2
=> BC=10cm 
c) Saef phần Sabc=(AE phần AB)^2=cos^2 A=1 phần 4 => SAEF =1 phần 4 SABC=25cm^2

Bình luận (0)
 Khách vãng lai đã xóa
DH
20 tháng 9 2021 lúc 20:36

 

loading...
Bình luận (0)
 Khách vãng lai đã xóa
TH
20 tháng 9 2021 lúc 22:50

a)xét tam giác AEB và tam giác AFC có:

Góc A chung

góc AEB=góc AFC=90 độ(gt)

=> tam giác AEB đồng dạng với tam giác ABC (g.g)

=> \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

=> tam giác AEF đồng dạng với tam giác ABC (g.c.g)

b) theo a => \(\dfrac{EF}{BC}=\dfrac{AE}{AB}=cosA=cos60^0=\dfrac{1}{2}\)

=> Bc=10cm

c)\(\dfrac{S_{AEF}}{S_{ABC}}=\left(\dfrac{AE}{AB}\right)^2=cos^2=\dfrac{1}{4}\)=>\(S_{AEF}=\dfrac{1}{4}S_{ABC}=25cm^2\)

Bình luận (0)
 Khách vãng lai đã xóa
TM
Xem chi tiết
NT
4 tháng 4 2023 lúc 19:33

loading...  

Bình luận (1)
TM
Xem chi tiết
NT
10 tháng 3 2023 lúc 8:23

a: Xét ΔAEB vuông tại E và ΔAFC vuôg tại F có

góc BAE chung

=>ΔAEB đồng dạng với ΔAFC

=>AE/AF=AB/AC

=>AE*AC=AB*AF

b: Xét tứ giác AFHE có

góc AFH+góc AEH=180 độ

=>AFHE nội tiếp

=>góc FAH=góc FEH

=>goc BAD=góc BEF

Bình luận (0)