Cho hàm số y=f(x)=x^3-4x
Tìm x€R để f(x)=0
Bài 3. (1 điểm) Cho hàm số : y = f(x) = x3 – 4x.
a) Tính f(0), f(–2)
b) Tìm x thuộc R để f(x) = 0
Bài 3. (1 điểm) Cho hàm số : y = f(x) = x3 – 4x.
a) Tính f(0), f(–2)
b) Tìm x thuộc R để f(x) = 0
Cho hàm số y = f(x) = |3 - 4x|. Tìm xo để f(x0) = f(–x0)
cho hàm số y=f(x)=4x+a-√3 (2x+1)
a, chứng tỏ rằng hàm số là hàm số bậc nhất đồng biến
b, tìm x để f(x)=0
a: \(f\left(x\right)=4x+a-\sqrt{3}\left(2x+1\right)\)
\(=4x+a-2\sqrt{3}\cdot x-\sqrt{3}\)
\(=x\left(4-2\sqrt{3}\right)-\sqrt{3}+a\)
Vì \(4-2\sqrt{3}=\left(\sqrt{3}-1\right)^2>0\)
nên hàm số \(y=f\left(x\right)=x\left(4-2\sqrt{3}\right)+a-\sqrt{3}\) luôn đồng biến trên R
b: f(x)=0
=>\(x\left(4-2\sqrt{3}\right)+a-\sqrt{3}=0\)
=>\(x\left(4-2\sqrt{3}\right)=-a+\sqrt{3}\)
=>\(x=\dfrac{-a+\sqrt{3}}{4-2\sqrt{3}}\)
Cho hàm số y=f(x)=4x² - 5
a) Tính f(3), f(-1/2)
b) Tìm x để f(x) = -1
c)Chứng tỏ với mọi x ∈ R thì f(x)= f(-x)
Giúp mình với ạ cẻm ưn nhiều:3
a) Ta có: \(y=f\left(x\right)=4x^2-5\)
\(\Rightarrow\left\{{}\begin{matrix}f\left(3\right)=4.3^2-5=31\\f\left(-\dfrac{1}{2}\right)=4.\left(-\dfrac{1}{2}\right)^2-5=-4\end{matrix}\right.\)
b) Ta có: \(f\left(x\right)=-1\)
\(\Rightarrow4x^2-5=-1\)
\(\Leftrightarrow4x^2=4\)
\(\Leftrightarrow x^2=1\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
Vậy \(x\in\left\{1;-1\right\}\) thì \(f\left(x\right)=-1\)
c) \(\forall x\in R,f\left(x\right)=f\left(-x\right)\Leftrightarrow f\left(-x\right)=4.\left(-x\right)^2-5=4x^2-5=f\left(x\right)\)
Vậy \(\forall x\in R\) thì \(f\left(x\right)=f\left(-x\right)\)
\(a.f\left(3\right)=4.3^2-5=31.\\ f\left(\dfrac{-1}{2}\right)=4.\left(\dfrac{-1}{2}\right)^2-5=-4.\)
\(b.f\left(x\right)=-1.\Rightarrow4x^2-5=-1.\\ \Leftrightarrow4x^2=4.\Leftrightarrow x^2=1.\\ \Leftrightarrow x=\pm1.\)
\(c.f\left(x\right)=f\left(-x\right).\\ \Rightarrow4x^2-5=4\left(-x\right)^2-5.\\ \Leftrightarrow4x^2-5=4x^2-5.\)
\(\Leftrightarrow0x=0\) (luôn đúng).
Vậy với mọi x ∈ R thì f (x)= f (-x).
a) Do \( y=f(x)=4x² - 5 \) nên :
\(+) f(3) = 4 . 3^2 - 5 = 4 . 9 - 5 = 36 - 5 = 31 \)
\(+) f(\dfrac{1}{2}) = 4 . (\dfrac{1}{2})^2 - 5 = 4 . \dfrac{1}{4} - 5 = 1 - 5 = -4 \)
Vậy : \(f(3) = 31 ; f(\dfrac{1}{2}) = -4 \)
b) Do \(f(x) = -1 \)
Mà \(f(x) = 4x^2 - 5 \)
\(=> \) \(4x^2 - 5 = -1 \)
\(=> 4x^2 = -1 + 5 \)
\(=> 4x^2 = 4 \)
\(=> x^2 = 1 \) \(= 1^2 = ( -1)^2 \)
\(=> x \) ∈ { -1 ; 1 }
Vậy với \(f(x) = -1 \) thì x ∈ { -1 ; 1 }
c) Ta có : Do \(x^2 = ( -x )^2 \)
\(=> \) \(4x^2 = 4(-x)^2 \)
\(=> 4x^2 - 5 = 4( -x )^2 - 5 \)
\(=> f(x) = f(-x) \)
Vậy với mọi x ∈ R thì \(f(x) = f(-x)\)
Cho hàm số y=f(x) = -1/4x - 2/3
+ Hãy tính: f (0) ; f(4)
+ Tìm x để f(x) =1/3
cho hàm số y = f(x) = 4x^2 - 9
a. Tính f(-2); f(-1/2)
b. Tìm x để f(x) = -1
c. Chứng tỏ rằng với x thuộc R thì f(x) = f(-x)
\(y=f\left(x\right)=4x^2-9\)
a, \(f\left(-2\right)=4.\left(-2\right)^2-9\)
\(=16-9\)
\(=7\)
\(f\left(-\dfrac{1}{2}\right)=4.\left(-\dfrac{1}{2}\right)^2-9\)
\(=4.\dfrac{1}{4}-9\)
\(=1-9\)
\(=-8\)
b, \(f\left(x\right)=-1\Rightarrow4x^2-9=-1\)
\(\Leftrightarrow4x^2=8\)
\(\Leftrightarrow x^2=2\)
\(\Leftrightarrow\)\(x=\pm\sqrt[]{2}\)
c, Ta có \(f\left(x\right)=4x^2-9\)
\(f\left(-x\right)=4\left(x\right)^2-9\)
\(=4x^2-9\) \(=f\left(x\right)\)
Vậy \(f\left(x\right)=f\left(-x\right)\)
-Chúc bạn học tốt-
Cho hàm số y=f(x)=4x^2-5
a,Tính f(3)+f(-1/2)
b,tìm f(x)để x=-1
c/chứng minh rằng mọi x thuộc R thì f(x)=f(-x)
a) Thay f(3) vào hàm số ta có :
y=f(3)=4.32-5=31
Thay f(-1/2) vào hàm số ta có :
y=f(-1/2)=4.(-1/2)2-5=-4
b) Thay x=-1 vào hàm số ta có : 4.(-1)2-5=-1
=> f(-1) với x=-1
tfyjtftftfkyh,hjgjfyhfj,fjghjgjfyfyjfjyhfjhyf,hfykfyffuyfh,jyfhjhjhfhjhhhhhcghgiufyf
Cho hàm số y = f(x) = -4x + 1
a)Tính f(-1); f(-1/2)
b) Tìm x để y=0; y=-3
a) +) \(f\left(-1\right)=\left(-4\right).\left(-1\right)+1=5\)
+) \(f\left(-\frac{1}{2}\right)=\left(-4\right).\left(-\frac{1}{2}\right)+1=3\)
b) +) y = 0
-4x + 1 = 0
-4x = 0 - 1
-4x = -1
x = 1/4
+) y = -3
-4x + 1 = -3
-4x = -3 - 1
-4x = -4
x = 1