2x(3x-2)=(3x-1)(3x-2)
Rút gọn :
1. (2x-5)(3x+1)-(x-3)^2+(2x+5)^2-(3x+1)^3
2. (2x-1)(2x+1)-3x-2)(2x+3)-(x-1)^3+(2x+3)^3
3. (x-2)(x^2+2x+4)-(3x-2)^3+(3x-4)^2
4. (7x-1)(8x+2)-(2x-7)^2-(x-4)^3-(3x+1)^3
5. (5x-1)(5x+1)-(x+3)(x^2-3x+9)-(2x+4)^2-(3x-4)^2+(2x-5)^3
6. (4x-1)(x+2)-(2x+5)^2-(3x-7)^2+(2x+3)^3=(3x-1)^3
1: \(=6x^2+2x-15x-5-x^2+6x-9+4x^2+20x+25-27x^3-27x^2-9x-1\)
=-27x^3-18x^2+4x+10
2: =4x^2-1-6x^2-9x+4x+6-x^3+3x^2-3x+1+8x^3+36x^2+54x+27
=7x^3+37x^2+46x+33
5:
\(=25x^2-1-x^3-27-4x^2-16x-16-9x^2+24x-16+\left(2x-5\right)^3\)
\(=8x^3-60x^2+150-125+12x^2-x^3+8x-60\)
=7x^3-48x^2+8x-35
Bài 2 Tìm x biết 1, (2x-2).(3x+1)-(3x-2).(2x-3)=5 2,(1-3x).(3x-5)-(2x-4)(2-3x)=x-6 3,(2x-1).(4x^2+2x+1)-(2x+1)(4x^2-2x+1)=5x+6 Giúp tớ với
d) (3x – 5)(7 – 5x) – (5x + 2)(2 – 3x) = 4 g) 3(2x - 1)(3x - 1) - (2x - 3)(9x - 1) =0 j) (2x – 1)(3x + 1) – (4 – 3x)(3 – 2x) = 3 k) (2x + 1)(x + 3) – (x – 5)(7 + 2x) = 8 m) 2(3x – 1)(2x + 5) – 6(2x – 1)(x + 2) = - 6
g: Ta có: \(3\left(2x-1\right)\left(3x-1\right)-\left(2x-3\right)\left(9x-1\right)=0\)
\(\Leftrightarrow3\left(6x^2-5x+1\right)-\left(18x^2-29x+3\right)=0\)
\(\Leftrightarrow18x^2-15x+3-18x^2+29x-3=0\)
\(\Leftrightarrow14x=0\)
hay x=0
Rut gon cac bieu thuc sau:
1) A= (x2+3x+1)2 + (3x-1)2 - 2(x2+3x+1)(3x-1)
2) B= (3x2+3x+1)(3x3-3x+1) - (3x3+1)2
3) C= (2x2+2x=1)(2x2 - 2x+1) - (2x2+1)2
tính
\(\dfrac{x^2+38x+4}{2x^2+17x+1}-\dfrac{3x^2-4x-2}{2x^2+17x+1}\)
\(\dfrac{3x+1}{3x^2-3x+1}+\dfrac{x^2-6x}{x^2-3x+1}\)
\(\dfrac{-x}{3x-2}+\dfrac{7x-4}{3x-2}\)
a) Ta có: \(\dfrac{x^2+38x+4}{2x^2+17x+1}-\dfrac{3x^2-4x-2}{2x^2+17x+1}\)
\(=\dfrac{x^2+38x+4-3x^2+4x+2}{2x^2+17x+1}\)
\(=\dfrac{-2x^2+42x+6}{2x^2+17x+1}\)
c) Ta có: \(C=\dfrac{-x}{3x-2}+\dfrac{7x-4}{3x-2}\)
\(=\dfrac{-x+7x-4}{3x-2}\)
\(=\dfrac{6x-4}{3x-2}=2\)
b1:
[4+2x]=-3x [3x-1]+2=x
[x+15]+1=3x [2x-5]+x=2
b2:
[2x-5]=x+1 [3x-2]-1=x
[3x-7]=2x+1 [2x-1]+1=x
Giải PT
1 ) (2x + 1)(3x – 2) = (5x – 8)(2x + 1)
2) 4x2 -1 = (2x + 1)(3x – 5)
3) (x + 1)2 = 4(x2 – 2x + 1)
4) 2x3+ 5x2 – 3x = 0
5) {2x{ = 3x – 2
6) x + 15 = 3x – 1
7) 2 – x = 0,5x – 4
1) (2x + 1)(3x – 2) = (5x – 8)(2x + 1)
⇔ (2x + 1)(3x – 2) – (5x – 8)(2x + 1) = 0
⇔ (2x + 1).[(3x – 2) – (5x – 8)] = 0
⇔ (2x + 1).(3x – 2 – 5x + 8) = 0
⇔ (2x + 1)(6 – 2x) = 0
⇔\(\left[{}\begin{matrix}2x+1=0\\6-2x=0\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}x=\dfrac{-1}{2}\\x=3\end{matrix}\right.\)
Vậy.....
2) 4x2 -1 = (2x + 1)(3x - 5)
⇔ (2x-1)(2x+1)-(2x+1)(3x-5)=0
⇔ (2x+1)(2x-1-3x+5)=0
⇔ (2x+1)(4-x)=0
⇔ \(\left[{}\begin{matrix}2x+1=0\\4-x=0\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}x=\dfrac{-1}{2}\\x=4\end{matrix}\right.\)
Vậy...
3)
(x + 1)2 = 4(x2 – 2x + 1)
⇔ (x + 1)2 - 4(x2 – 2x + 1) = 0
⇔ x2 + 2x +1- 4x2 + 8x – 4 = 0
⇔ - 3x2 + 10x – 3 = 0
⇔ (- 3x2 + 9x) + (x – 3) = 0
⇔ -3x (x – 3)+ ( x- 3) = 0
⇔ ( x- 3) ( - 3x + 1) = 0
⇔\(\left[{}\begin{matrix}x-3=0\\-3x+1=0\end{matrix}\right.\) ⇔\(\left[{}\begin{matrix}x=3\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy......
4) 2x3+5x2-3x=0
⇒2x3-x2+6x2-3x=0
⇒(2x3-x2)+(6x2-3x)=0
⇒x2(2x-1)+3x(2x-1)=0
⇒(x2+3x)(2x-1)=0
⇒ hoặc x2+3x=0⇒x(x+3)=0⇒hoặc x=0 hoặc x=-3
hoặc 2x-1=0⇒x=0,5
Vậy ...
5)2x=3x-2
⇒2x-3x=-2
⇒-x=-2
⇒x=2
6) x+15=3x-1
⇒x-3x=-1-15
⇒-2x=-16
⇒x=8
7)2-x=0,5x-4
⇒-x-0,5x=-4-2
⇒-1,5x=-6
⇒x=4
a) x\(^2\)-3x+7=1+2x
b) x\(^2\)-3x-10=0
c) x\(^2\)-3x+4=2(x-1)
d) (x+1)(x-2)(x-5)=0
e) 2x\(^2\)+3x+1=0
f) 4x\(^2\)-3x=2x-1
a) Ta có: \(x^2-3x+7=1+2x\)
\(\Leftrightarrow x^2-3x+7-1-2x=0\)
\(\Leftrightarrow x^2-3x-2x+6=0\)
\(\Leftrightarrow x\left(x-3\right)-2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=2\end{matrix}\right.\)
Vậy: S={3;2}
b) Ta có: \(x^2-3x-10=0\)
\(\Leftrightarrow x^2-5x+2x-10=0\)
\(\Leftrightarrow x\left(x-5\right)+2\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
Vậy: S={5;-2}
c) Ta có: \(x^2-3x+4=2\left(x-1\right)\)
\(\Leftrightarrow x^2-3x+4=2x-2\)
\(\Leftrightarrow x^2-3x+4-2x+2=0\)
\(\Leftrightarrow x^2-3x-2x+6=0\)
\(\Leftrightarrow x\left(x-3\right)-2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=2\end{matrix}\right.\)
Vậy: S={3;2}
d) Ta có: \(\left(x+1\right)\left(x-2\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x-2=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=2\\x=5\end{matrix}\right.\)
Vậy: S={-1;2;5}
e) Ta có: \(2x^2+3x+1=0\)
\(\Leftrightarrow2x^2+2x+x+1=0\)
\(\Leftrightarrow2x\left(x+1\right)+\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\2x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{-1}{2}\end{matrix}\right.\)
Vậy: \(S=\left\{-1;\dfrac{-1}{2}\right\}\)
f) Ta có: \(4x^2-3x=2x-1\)
\(\Leftrightarrow4x^2-3x-2x+1=0\)
\(\Leftrightarrow4x^2-5x+1=0\)
\(\Leftrightarrow4x^2-4x-x+1=0\)
\(\Leftrightarrow4x\left(x-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(4x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\4x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\4x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{4}\end{matrix}\right.\)
Vậy: \(S=\left\{1;\dfrac{1}{4}\right\}\)
1-3x/2x + 3x-2/2x-1 + 2-3x/4x2-2x
\(2x;2x-1;4x^2-2x=2x\left(2x-1\right)\)
\(MTC=2x\left(2x-1\right)\)
\(\dfrac{1-3x}{2x}+\dfrac{3x-2}{2x-1}+\dfrac{2-3x}{4x^2-2x}\)
\(=\dfrac{\left(1-3x\right).2x\left(2x-1\right)}{2x\left(2x-1\right)}+\dfrac{\left(3x-2\right).2x}{\left(2x-1\right).2x}+\dfrac{2-3x}{2x\left(2x-1\right)}\)
\(=\dfrac{2x\left(1-3x\right)\left(2x-1\right)+2x\left(2x-2\right)+2-3x}{2x\left(2x-1\right)}\)
\(=\dfrac{-8x^2+4x+4x^2-4x+2-3x}{2x\left(2x-1\right)}\)
\(=\dfrac{-4x^2-3x+2}{2x\left(2x-1\right)}\)
#AEZn8
\(\dfrac{1-3x}{2x}+\dfrac{3x-2}{2x-1}+\dfrac{2-3x}{4x^2-2x}=\dfrac{\left(1-3x\right)\left(2x-1\right)}{2x\left(2x-1\right)}+\dfrac{2x\left(3x-2\right)}{2x\left(2x-1\right)}+\dfrac{2-3x}{2x\left(2x-1\right)}=\dfrac{-6x^2+5x-1}{2x\left(2x-1\right)}+\dfrac{6x^2-4x}{2x\left(2x-1\right)}+\dfrac{2-3x}{2x\left(2x-1\right)}=\dfrac{\left(-6x^2+6x^2\right)+\left(5x-4x-3x\right)+\left(-1+2\right)}{2x\left(2x-1\right)}=\dfrac{-2x}{2x\left(2x-1\right)}=\dfrac{-1}{2x-1}\)
Bài1: Rút gọn
a) A= (x^2+3x+1)^2+(3x-1)^2+2.(x^2+3x+1).(1-3x)
b) B= (3x^3+3x+1).(3x^3-3x+1)-(3x^3+1)^2
c) C= (2x^2+2x+1).(2x^2+1)-(2x^2+1)^2
Bài2:Chứng minh rằng
a) (a^2+b^2-c^2)-(a^2-b^2+c^2)^2=4ab^2-4ac^2