Bài 1: Tìm x, y biết :
a,\(\left(x-2\right)^{2012}+\left|y^2-9\right|^{2014}=0\)
Bài 1:Tính
a)\(0,\left(3\right)+3\frac{1}{3}+0,\left(31\right)\)
b)\(\frac{4}{9}+1,2\left(31\right)-0,\left(13\right)\)
Bài 2:Tìm x,biết
\(0,\left(37\right)\times x=1\)
tìm x,y: \(\left(x-2\right)^{2012}+\left|y^2-9\right|^{2014}=0\)
Vì (x-2)2012 ≥ 0
/y2 -9/2014 ≥ 0\
=> (x-2)2012 +/y2 -9/2014 = 0
=> (x-2)2012 = 0
/y2 - 9/ 2014 = 0
=> x-2 = 0
y2 -9 = 0
=> x = 0
y2 = 9
=> x = 0
y = 3 ; -3
Bài 1. Cho hai đường tròn \(\left(C_1\right):x^2+y^2=9\) và \(\left(C_2\right):x^2+y^2-2x-3=0\) .
1/ Tìm tâm và bán kính của đường tròn \(\left(C_1\right)\) và \(\left(C_2\right)\)
2/ Xét vị trí tương đối của \(\left(C_1\right)\) và \(\left(C_2\right)\)
3/ Viết phương trình tiếp tuyến chung của \(\left(C_1\right)\) và \(\left(C_2\right)\) .
Phương trình (C1) chắc chắn sai rồi em
\(\left(x-2\right)^{2012}+\left|y^2-9\right|^{2014}=0\)
\(\left(x-2\right)^{2012}+\left|y^2-9\right|^{2014}=0\)
\(\left(x-2\right)^{2012}\ge0;\left|y^2-9\right|^{2014}\ge0\)
\(\Rightarrow\hept{\begin{cases}x-2=0\\y^2-9=0\Rightarrow y^2=9\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=2\\y=\pm3\end{cases}}\)
Ta có (x-2)2012 >= 0 với mọi x
Iy2-9I2014 >=0 với mọi y
Mà (x-2)2012+Iy2-9I2014=0
=> (x-2)2012=0 và Iy2-9I2014=0
<=> x-2=0 và y2-9=0
<=> x=2 và y={-3;3}
\(\)Vì \(\left(x-2\right)^{2012}\ge0\)(với mọi n )
và \(\left|y^2-9\right|^{2014}\ge0\) (với mọi n )
+ Để \(\left(x-2\right)^{2012}+\left|y^2-9\right|^{2014}=0\)
=> \(\hept{\begin{cases}\left(x-2\right)^{2012}=0\\\left|y^2-9\right|^{2014}=0\end{cases}}\)
tìm x và y
\(\left(x-2\right)^{2012}+\left|y^2-9\right|^{2014}=0\)
\(\left(x-2\right)^{2012}+\left|y^2-9\right|^{2014}=0\)
ta thấy rằng:
\(\left(x-2\right)^{2012}>=0\)
\(\left|y^2-9\right|^{2014}>=0\)
Để \(\left(x-2\right)^{2012}+\left|y^2-9\right|^{2014}=0\)
Thì (x-2)=0 và |y2 - 9|=0
=> x=2 và y= 3
(x−2)2012+∣y2−9∣2014=0
Ta thấy:
\(\left(x-2\right)^{2012}\)≥0;\(\left|y^2-9\right|^{2014}\)≥0
\(\Leftrightarrow\)\(\left(x-2\right)^{2012}=0\) ⇒\(x-2=0\Rightarrow x=2\)
\(\Leftrightarrow\)\(\left|y^2-9\right|^{2014}=0\Rightarrow y^2-9=0\)\(\rightarrow\)\(y^2=9\)
\(\Rightarrow\)\(y=\left\{{}\begin{matrix}3\\-3\end{matrix}\right.\)
Vậy:\(\left[{}\begin{matrix}x=2\\y=3\end{matrix}\right.\) hoàc \(\left[{}\begin{matrix}x=2\\y=-3\end{matrix}\right.\)
Tìm x, y biết:
a) \(\left|-x+2\right|=-\left|y+9\right|\)
b) \(\left|3x+4\right|+\left|2y-10\right|\le0\)
c) \(\left|-x-3\right|+\left|y+7\right|< 0\)
a) |-x + 2| = -|y + 9|
=> |-x + 2| + |y + 9| = 0
Ta có: |-x + 2| \(\ge\)0 \(\forall\)x
|y + 9| \(\ge\)0 \(\forall\)y
=> |-x + 2| + |y + 9| \(\ge\)0 \(\forall\)x; y
Dấu "=" xảy ra khi : \(\hept{\begin{cases}-x+2=0\\y+9=0\end{cases}}\) => \(\hept{\begin{cases}x=2\\y=-9\end{cases}}\)
Vậy ...
b) |3x + 4| + |2y - 10| \(\le\)0
Ta có: |3x + 4| \(\ge\)0 \(\forall\)x
|2y - 10| \(\ge\)0 \(\forall\)y
=> |3x + 4| + |2y - 10| \(\ge\) 0 \(\forall\)x;y
Dấu "=" xảy ra khi : \(\hept{\begin{cases}3x+4=0\\2y-10=0\end{cases}}\) <=> \(\hept{\begin{cases}3x=-4\\2y=10\end{cases}}\) <=> \(\hept{\begin{cases}x=-\frac{4}{3}\\y=5\end{cases}}\)
vậy ...
c) |-x - 3| + |y + 7| < 0
Ta có: |-x - 3| \(\ge\)0 \(\forall\)x
|y + 7| \(\ge\)0 \(\forall\)y
=> |-x - 3| + |y + 7| \(\ge\)0 \(\forall\)x; y
=> ko có giá trị x, y thõa mãn đb
Bài 1 : Cho \(f\left(x\right)=x^3-2ax+b\). Tìm a,b biết đa thức có hai nghiệm là f(1)=-1 và f(0)=2
Bài 2 . Cho \(f\left(x\right)=x^3-2ax+b\). TÌm a,b biết đa thức có hai nghiệm là 0 và 3
tìm x,y biết
\(\left(x-2\right)^{2012}\)+\(\left|y^2-9\right|^{2014}\)=0
\(x=2\)
\(y=3\)
\(\Rightarrow x\cdot y=2\cdot3=6\)
x=2
y=3
\(\Rightarrow x.y=2.3=6\)NHA BAN
Giải phương trình 0,05(\(\left(\frac{2x-2}{2011}+\frac{2x}{2012}+\frac{2x+2}{2013}\right)=3,3-\left(\frac{x-1}{2011}+\frac{x}{2012}+\frac{x+1}{2013}\right)\)
bài 2 Tìm GTNN của biểu thức A=\(\text{x^2-5x+y^2+xy-4y+2012}\)