Chứng minh rằng với mọi số nguyên m thì m5-m chia hết cho 5
chứng minh rằng với mọi số nguyên m;n bất kì thì A=mn(m^4-n^4) chia hết cho 5
chứng minh rằng với mọi số nguyên m;n bất kì thì A=mn(m4-n4) chia hết cho 5
Xét m,n có 1 số chia hết cho 5 thì A \(⋮\)5
Xét m,n đều không chia hết cho 5
Ta có : với a \(⋮̸\)5 thì a có dạng : \(5k\pm1;5k\pm2\)
\(\Rightarrow a^4=\left(5k\pm1\right)^4=B\left(5\right)+1\)chia 5 dư 1
\(a^4=\left(5k\pm2\right)^4=B\left(5\right)+16=B\left(5\right)+1\)chia 5 dư 1
từ đó suy ra \(m^4\)chia 5 dư 1 ; \(n^4\)chia 5 dư 1
\(\Rightarrow m^4-n^4\)chia hết cho 5
\(\Rightarrow A⋮5\)
Vậy ....
Ta có: \(A=mn\left(m^4-n^4\right)=mn\left(m^4-1\right)-mn\left(n^4-1\right)\)
Xét \(a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)=a\left(a^2-1\right)\left(a^2-4\right)+5a\left(a^2-1\right)\)
\(=a\left(a-1\right)\left(a+1\right)\left(a-2\right)\left(a+2\right)+5a\left(a^2-1\right)⋮5\)với mọi a nguyên bất kì
=> \(nm\left(m^4-1\right)=n\left[m\left(m^4-1\right)\right]⋮5\)với m nguyên
\(nm\left(m^4-1\right)=m\left[n\left(n^4-1\right)\right]⋮5\)với n nguyên
=> \(A=mn\left(m^4-n^4\right)=mn\left(m^4-1\right)-mn\left(n^4-1\right)\) chia hết cho 5.
Chứng minh rằng với mọi số nguyên m và n, nếu a và b chia hết cho c thì am + bn chia hết cho c
Lời giải:
$a\vdots c\Rightarrow am\vdots c$ với mọi $m$ nguyên.
$b\vdots c\Rightarrow bn\vdots c$ với mọi $n$ nguyên.
$\Rightarrow am+bn\vdots c$ (đpcm)
Với mọi M, N thuộc số nguyên dương, tổng M2 + N2 chia hết cho 5 thì mọi số đều chia hết cho 5 ( chứng minh bằng phương pháp phản chứng)
chứng minh rằng với mọi số nguyên dương n thì n5 - n chia hết cho 5
\(n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)\)
\(=n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)\)
Do \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\) là tích 5 số nguyên liên tiếp nên chia hết cho 5 và \(5n\left(n-1\right)\left(n+1\right)⋮5\forall n\in Z^+\)
\(\Rightarrow n^5-n⋮5\forall n\in Z^+\)
1. Chứng minh rằng m^3-13m chia hết cho 6 với mọi m thuộc z
2. Không dùng máy tính bỏ túi, cmr: 685^3+315^3 chia hết 25000
3.CMR: A=75.(4^1975+4^1974+...+4^2+5)+25 chia hết cho 4^1976
4. CMR:a^5-a chia hết cho 5 với mọi số nguyên a
5. a^4-b^4 chia hết cho 5 với mọi số nguyên a,b
Cho m= abba.Tìm m
a) m không chia hết cho 2; m chia 5 dư 3 và ab+ba=99
b) m chia hết cho 2; m chia 5 dư 3 và b-a chia hết cho 5
bài 2
a) Chứng minh rằng với mọi số tự nhiên n thuộc N thì (n+4).(n+9) chia hết cho 2
b) Chứng minh rằng abba chia hết cho 11
Mọi người giúp em một bài toán chia hết lớp 9 ạ!
Chứng minh rằng với mọi số nguyên m, tồn tại số nguyên n sao cho n³-11n²-87n+m chia hết cho 191
Chứng minh rằng Với mọi số nguyên n thì n^5+5n^3+4n chia hết cho 5
Phân tích 5=1.5
nếu n^5+5n^3+4n muốn chja hết cho 5thì phải chja hết cho lân lượt 8,5,3
ta chứng minh như sau:
n^5-5n^3+4n=
(n-2)(n-1)n(n+1)(n+2)
chja hết cho 8 vì tích 2 số chẵn liên tiếp chia het cho 8, gjả sử n lẻ=>(n-1)(n+1) chja het 8, nếu n chẵn =>n(n+1) chja het 8,
.cm n chja hết 5, (n-2)(n-1)n(n+1)(n+2) là 5 số tự nhiên liên tiêp nên tồn tại 1 số chja hết cho 5,
cm chja hết 3, 3 số tự nhjen liên tiếp cũng có 1 số chja hết cho 3.
Từ chứng mjh trên suy ra dfcm cm n chja hết 5, (n-2)(n-1)n(n+1)(n+2) là 5 số tự nhiên liên tiêp nên tồn tại 1 số chja hết cho 5,
cm chja hết 3, 3 số tự nhjen liên tiếp cũng có 1 số chja hết cho 3.
Từ chứng mjh trên suy ra dfcm
Chứng minh rằng với mọi số nguyên n thì n(2n-3)-2n(n+1)chia hết cho 5
\(n\left(2n-3\right)-2n\left(n+1\right)=2n^2-3n-2n^2-2n=-5n\)
mà \(-5n⋮5\left(n\in Z\right)\)
⇒đpcm
\(n\left(2n-3\right)-2n\left(n+1\right)=\)
\(=2n^2-3n-2n^2-2n=-5n⋮5\)