phân tích thành nhân tử (2x+1)2-16x2
phân tích các đa thức sau thành nhân tử: a) 4x(2x - 3y) - 8y(3y - 2x) b) 4x2 - 4xy + y2 - 9z2 c) x2y + yz + xy2 + xz d) (1 - x2)x2 - 16x2 - 16
Bạn thử xem lại đề câu d nhé.
a) Ta có: \(4x\left(2x-3y\right)-8y\left(3y-2x\right)\)
\(=4x\left(2x-3y\right)+8y\left(2x-3y\right)\)
\(=4\left(2x-3y\right)\left(x+2y\right)\)
b) Ta có: \(4x^2-4xy+y^2-9z^2\)
\(=\left(2x+y\right)^2-\left(3z\right)^2\)
\(=\left(2x+y+3z\right)\left(2x+y-3z\right)\)
c) Ta có: \(x^2y+yz+xy^2+xz\)
\(=xy\left(x+y\right)+z\left(x+y\right)\)
\(=\left(x+y\right)\left(xy+z\right)\)
câu 1:tính
a) 4x2-9y2 b) ( 3x+y)3
câu 2 phân tích đa thức thành nhân tử
b) 4x2-12x+9
câu 3:tìm x,biết:6x3+16x2-150x-400=0
câu 4:phân tích đa thức thành nhân tử:D=(x+1)(x+3)(x+5)(x+7)+15
Phân tích đa thức thành nhân tử:
a) 64x3-16x2+x
b) 36-4xy+24y-x2
c) x2+10x-2010.2020
d) 25x2-121+22y-y2
e) (x2+2x)(x2+2x-2)-3
a.
$64x^3-16x^2+x=x(64x^2-16x+1)$
$=x(8x-1)^2$
b.
$36-4xy+24y-x^2=(4y^2+24y+36)-(x^2+4xy+4y^2)$
$=(2y+6)^2-(x+2y)^2=(2y+6-x-2y)(2y+6+x+2y)$
$=(6-x)(x+4y+6)$
c.
$x^2+10x-2010.2020$
$=x^2+10x-(2015-5)(2015+5)
$=x^2+10x-(2015^2-5^2)$
$=(x^2+10x+5^2)-2015^2=(x+5)^2-2015^2$
$=(x+5-2015)(x+5+2015)=(x-2010)(x+2020)$
d.
$25x^2-121+22y-y^2$
$=(5x)^2-(y^2-22y+11^2)$
$=(5x)^2-(y-11)^2=(5x-y+11)(5x+y-11)$
e.
$(x^2+2x)(x^2+2x-2)-3$
$=(x^2+2x)^2-2(x^2+2x)-3$
$=(x^2+2x)^2+(x^2+2x)-3(x^2+2x)-3$
$=(x^2+2x)(x^2+2x+1)-3(x^2+2x+1)$
$=(x^2+2x+1)(x^2+2x-3)$
$=(x+1)^2[x(x-1)+3(x-1)]$
$=(x+1)(x-1)(x+3)$
a: \(64x^3-16x^2+x\)
\(=x\left(64x^2-16x+1\right)\)
\(=x\left(8x-1\right)^2\)
b: \(36-4xy+24y-x^2\)
\(=-\left(x-6\right)\left(x+6\right)-4y\left(x-6\right)\)
\(=\left(x-6\right)\left(-x-6-4y\right)\)
c: \(x^2+10x-2010\cdot2020\)
\(=x^2+2020x-2010x-2010\cdot2020\)
\(=x\left(x+2020\right)-2010\left(x+2020\right)\)
\(=\left(x+2020\right)\left(x-2010\right)\)
16x2 - ( x + 1)2
Phân tích đa thức thành nhân tử
\(=\left(4x-x-1\right)\left(4x+x+1\right)=\left(3x-1\right)\left(5x+1\right)\)
\(=\left(4x-x-1\right)\left(4x+x+1\right)=\left(3x-1\right)\left(5x+1\right)\)
Phân tích đa thức thành nhân tử:
+)5x2y2+15x2+30xy2
+)(x-2)(x-3)+4-x2
+)x2-7x+12
+)x3-2x2y+xy2-9x
+)x2-25+y2+2xy
+)x2-x-12
+)5x25xy-x-y
+)12y(2x-5)+6xy(5-2x)
+)16x2+24x-8xy-6y+y2
+)(x+3)(x+6)(x+9)(x+12)+81
a: \(=5x\left(xy^2+3x+6y^2\right)\)
b: \(=\left(x-2\right)\left(x+3\right)-\left(x-2\right)\left(x+2\right)=\left(x-2\right)\left(x+3-x-2\right)=\left(x-2\right)\)
c: \(=\left(x-3\right)\left(x-4\right)\)
d: \(=x\left(x^2-2xy+y^2-9\right)\)
=x(x-y-3)(x-y+3)
e: \(=\left(x+y\right)^2-25=\left(x+y+5\right)\left(x+y-5\right)\)
f: \(=\left(x-4\right)\left(x+3\right)\)
Phân tích đa thức sau thành nhân tử:
a.(x+y)^2-2(x+y)+1
b.x^3+1-x^2-x
c.27x^3 - 0,001
d.125x^3 - 1
e.(x2 + 4)^2 - 16x2^
a) (x + y)2 - 2(x + y) + 1
= (x + y)2 - 2.1.(x + y) + 1
= (x + y - 1)2
b) x3 + 1 - x2 - x
= (x3 - x2) - (x - 1)
= x2(x - 1) - (x - 1)
= (x2 - 1)(x - 1) = (x - 1)(x + 1)(x - 1) = (x - 1)2(x + 1)
c) 27x3 - 0,001
= \(\left(3x\right)^3-\frac{1}{1000}=\left(3x\right)^3-\left(\frac{1}{10}\right)^3=\left(3x-\frac{1}{10}\right)\left(9x^2+\frac{3}{10}x+\frac{1}{100}\right)\)
d) 125x3 - 1 =(5x)3 - 1 = (5x - 1)(25x2 + 5x + 1)
e) (x2 + 4)2 - 16x2
= (x2 + 4)2 - (4x)2
= (x2 - 4x + 4)(x2 + 4x + 4)
= (x - 2)2(x + 2)2
= [(x - 2)(x + 2)]2
a.\(\left(x+y\right)^2-2\left(x+y\right)+1\)
\(=\left(x+y\right)^2-2.\left(x+y\right).1+1^2\)
\(=\left[\left(x+y\right)-1\right]^2\)
\(=\left(x+y-1\right)^2\)
b.\(x^3+1-x^2-x\)
\(=\left(x^3-x^2\right)+\left(1-x\right)\)
\(=x^2\left(x-1\right)-\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2-1\right)\)
\(=\left(x-1\right)^2\left(x+1\right)\)
c.\(27x^3-0,001\)
\(=27x^3-\frac{1}{1000}\)
\(=\left(3x\right)^3-\left(\frac{1}{10}\right)^3\)
\(=\left(3x-\frac{1}{10}\right)\left(9x^2+0,3x+\frac{1}{100}\right)\)
d,\(125x^3-1\)
\(=\left(5x\right)^3-1^3\)
\(=\left(5x-1\right)\left(25x^2+5x+1\right)\)
e.\(\left(x^2+4\right)^2-16x^2\)
\(=\left(x^2+4\right)^2-\left(4x\right)^2\)
\(=\left(x^2+4-4x\right)\left(x^2+4+4x\right)\)
\(=\left(x^2-4x+4\right)\left(x^2+4x+4\right)\)
\(=\left(x-2\right)^2\left(x+2\right)^2\)
Phân tích đa thức thành nhân tử:
a) 50x5-8x3
b) x4-5x2-4y2+10y
c) 36a2-b2+12a+1
d) x3+y3-xy2-x2y
e) 4x2+4x-3
f) 9x4+16x2-4
g) -6x2+5xy+4y2
h)(x2+4x)2+8(x2+4x)+15
i) 9x4+5x2+1
a: \(50x^5-8x^3\)
\(=2x^3\left(25x^2-4\right)\)
\(=2x^3\left(5x-2\right)\left(5x+2\right)\)
b: \(x^4-5x^2-4y^2+10y\)
\(=\left(x^2-2y\right)\left(x^2+2y\right)-5\left(x^2-2y\right)\)
\(=\left(x^2-2y\right)\left(x^2+2y-5\right)\)
c: \(36a^2+12a+1-b^2\)
\(=\left(6a+1\right)^2-b^2\)
\(=\left(6a+1-b\right)\left(6a+1+b\right)\)
d: \(x^3+y^3-xy^2-x^2y\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)-xy\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-2xy+y^2\right)\)
\(=\left(x+y\right)\cdot\left(x-y\right)^2\)
e: Ta có: \(4x^2+4x-3\)
\(=4x^2+6x-2x-3\)
\(=2x\left(2x+3\right)-\left(2x+3\right)\)
\(=\left(2x+3\right)\left(2x-1\right)\)
f: Ta có: \(9x^4+16x^2-4\)
\(=9x^4+18x^2-2x^2-4\)
\(=9x^2\left(x^2+2\right)-2\left(x^2+2\right)\)
\(=\left(x^2+2\right)\left(9x^2-2\right)\)
g: Ta có: \(-6x^2+5xy+4y^2\)
\(=-6x^2+8xy-3xy+4y^2\)
\(=-2x\left(3x-4y\right)-y\left(3x-4y\right)\)
\(=\left(3x-4y\right)\left(-2x-y\right)\)
h: Ta có: \(\left(x^2+4x\right)^2+8\left(x^2+4x\right)+15\)
\(=\left(x^2+4x\right)^2+3\left(x^2+4x\right)+5\left(x^2+4x\right)+15\)
\(=\left(x^2+4x+3\right)\cdot\left(x^2+4x+5\right)\)
\(=\left(x+1\right)\left(x+3\right)\left(x^2+4x+5\right)\)
Bài 1: Phân tích đa thức thành nhân tử.
a) 4x2 – 1 b) 25x2 - 0,09
d) (x - y)2 - 4
e) 9 - (x - y)2
f) (x2 + 4)2 - 16x2
\(a,4x^2-1\)
\(=\left(2x\right)^2-1^2\)
\(=\left(2x-1\right)\left(2x+1\right)\)
\(b,25x^2-0,09\)
\(=\left(5x\right)^2-\left(0,3\right)^2\)
\(=\left(5x-0,3\right)\left(5x+0,3\right)\)
\(d,\left(x-y\right)^2-4\)
\(=\left(x-y\right)^2-2^2\)
\(=\left(x-y-2\right)\left(x-y+2\right)\)
\(e,9-\left(x-y\right)^2\)
\(=3^2-\left(x-y\right)^2\)
\(=\left[3-\left(x-y\right)\right]\left[3+\left(x-y\right)\right]\)
\(=\left(3-x+y\right)\left(3+x-y\right)\)
\(=\left(-x+y+3\right)\left(x-y+3\right)\)
\(f,\left(x^2+4\right)^2-16x^2\)
\(=\left(x^2+4\right)^2-\left(4x\right)^2\)
\(=\left(x^2+4-4x\right)\left(x^2+4+4x\right)\)
\(=\left(x^2-2\cdot x\cdot2+2^2\right)\left(x^2+2\cdot x\cdot2+2^2\right)\)
\(=\left(x-2\right)^2\left(x+2\right)^2\)
#\(Toru\)
`#3107`
a)
`4x^2 - 1`
`= (2x)^2 - 1^2`
`= (2x - 1)(2x + 1)`
b)
`25x^2 - 0,09`
`= (5x)^2 - (0,3)^2`
`= (5x - 0,3)(5x + 0,3)`
d)
`(x - y)^2 - 4`
`= (x - y)^2 - 2^2`
`= (x - y - 2)(x - y + 2)`
e)
`9 - (x - y)^2`
`= 3^2 - (x - y)^2`
`= (3 - x + y)(3 + x - y)`
f)
`(x^2 + 4)^2 - 16x^2`
`= (x^2 + 4)^2 - (4x)^2`
`= (x^2 - 4x + 4)(x^2 + 4x + 4)`
`= (x - 2)^2 * (x + 2)^2`
_____
Tất cả các câu trên bạn sử dụng hđt:
`A^2 - B^2 = (A - B)(A + B)`
\(#MaiChangLaAnhDau..\)
Bài 7: Phân tích đa thức thành nhân tử:
a, 4x2 - 1
b, x2 -3y2
c, 9x2 -1/4
d, (x-y)2 -4
e, 9 - (x-y)2
f, (x2 + 4)2 - 16x2
a) \(4x^2-1\)
\(=\left(2x\right)^2-1^2\)
\(=\left(2x-1\right)\left(2x+1\right)\)
b) \(x^2-3y^2\)
\(=x^2-\left(y\sqrt{3}\right)^2\)
\(=\left(x-y\sqrt{3}\right)\left(x+y\sqrt{3}\right)\)
c) \(9x^2-\dfrac{1}{4}\)
\(=\left(3x\right)^2-\left(\dfrac{1}{2}\right)^2\)
\(=\left(3x-\dfrac{1}{2}\right)\left(3x+\dfrac{1}{2}\right)\)
d) \(\left(x-y\right)^2-4\)
\(=\left(x-y\right)^2-2^2\)
\(=\left(x-y-2\right)\left(x-y+2\right)\)
e) \(9-\left(x-y\right)^2\)
\(=3^2-\left(x-y\right)^2\)
\(=\left(3+x-y\right)\left(3-x+y\right)\)
f) \(\left(x^2+4\right)^2-16x^2\)
\(=\left(x^2+4\right)^2-\left(4x\right)^2\)
\(=\left(x^2-4x+4\right)\left(x^2+4x+4\right)\)
\(=\left(x-2\right)^2\left(x+2\right)^2\)