Những câu hỏi liên quan
NL
Xem chi tiết
DH
5 tháng 12 2021 lúc 17:11

\(9x^2+5y^2-6xy-6x-6y+20\)

\(=9x^2+y^2+1-6x+2y-6xy+4y^2-8y+4+15\)

\(=\left(3x-y-1\right)^2+4\left(y-1\right)^2+15\ge15\)

Dấu \(=\)khi \(\hept{\begin{cases}3x-y-1=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{2}{3}\\y=1\end{cases}}\).

Bình luận (0)
 Khách vãng lai đã xóa
PB
Xem chi tiết
H9
21 tháng 7 2023 lúc 8:10

\(A=\sqrt{1-6x+9x^2}+\sqrt{9x^2-12x+4}\)

\(A=\sqrt{1^2-2\cdot3x\cdot1+\left(3x\right)^2}+\sqrt{\left(3x\right)^2-2\cdot2\cdot3x+2^2}\)

\(A=\sqrt{\left(1-3x\right)^2}+\sqrt{\left(3x-2\right)^2}\)

\(A=\left|1-3x\right|+\left|3x-2\right|\)

\(A=\left|1-3x+3x-2\right|\)

\(A=\left|-1\right|=1\)

Dấu "=" xảy ra \(\left(1-3x\right)\left(3x-2\right)\ge0\)

\(\Rightarrow\dfrac{1}{3}\le x\le\dfrac{2}{3}\)

Vậy: \(A_{min}=1\) khi \(\dfrac{1}{3}\le x\le\dfrac{2}{3}\)

Bình luận (1)
MT
Xem chi tiết
HN
25 tháng 7 2016 lúc 8:33

a) Đặt \(A=\frac{2}{6x-9x^2-21}\).  A đạt giá trị nhỏ nhất khi \(\frac{1}{A}\)đạt giá trị lớn nhất.

Ta có : \(\frac{1}{A}=\frac{-9x^2+6x-21}{20}=-\frac{9}{20}\left(x-\frac{1}{3}\right)^2-1\le-1\)

Vậy \(Max\left(\frac{1}{A}\right)=-1\Leftrightarrow x=\frac{1}{3}\)

=> \(MinA=-1\Leftrightarrow x=\frac{1}{3}\)

b) Đặt \(B=\left(x-1\right)\left(x-2\right)\left(x-5\right)\left(x-6\right)\)

Ta có ; \(B=\left[\left(x-1\right)\left(x-6\right)\right].\left[\left(x-2\right)\left(x-5\right)\right]=\left(x^2-7x+6\right)\left(x^2-7x+10\right)\)

Đặt \(y=x^2-7x+8\) \(\Rightarrow B=\left(y+2\right)\left(y-2\right)=y^2-4\ge-4\)

Min B = -4 khi và chỉ khi  \(x^2-7x+8=0\Leftrightarrow\orbr{\begin{cases}x=\frac{7+\sqrt{17}}{2}\\x=\frac{7-\sqrt{17}}{2}\end{cases}}\)

Bình luận (0)
TT
24 tháng 10 2016 lúc 18:57

chưa học hihi

Bình luận (0)
NH
Xem chi tiết
VB
31 tháng 12 2015 lúc 19:56

Ta có: 9x^2 - 6x +5= 9x^2 - 6x + 1 +4 = (3x+1)^2 +4 lớn hơn hoặc bằng 4 với mọi x                                                                                                              Suy ra GTNN của biểu thức trên = 4 khi và chỉ khi x= -1/3.                         Vậy x=-1/3 thì GTNN của biểu thức là 4

Bình luận (0)
SD
Xem chi tiết
LL
15 tháng 9 2021 lúc 19:43

1) \(M=9x^2-6x+6=\left(9x^2-6x+1\right)+5=\left(3x-1\right)^2+5\ge5\)

\(minM=5\Leftrightarrow x=\dfrac{1}{3}\)

2) \(M=5-2x-x^2=-\left(x^2+2x+1\right)+6=-\left(x+1\right)^2+6\le6\)

\(maxM=6\Leftrightarrow x=-1\)

3) \(N=5+6x-9x^2=-\left(9x^2-6x+1\right)+6=-\left(3x-1\right)^2+6\le6\)

\(maxN=6\Leftrightarrow x=\dfrac{1}{3}\)

Bình luận (1)
TL
Xem chi tiết
NN
21 tháng 8 2020 lúc 15:30

a) \(A=\sqrt{4x^2+4x+2}=\sqrt{4x^2+4x+1+1}=\sqrt{\left(2x+1\right)^2+1}\)

Vì \(\left(2x+1\right)^2\ge0\forall x\)\(\Rightarrow\left(2x+1\right)^2+1\ge1\forall x\)

\(\Rightarrow A\ge\sqrt{1}=1\)

Dấu " = " xảy ra \(\Leftrightarrow2x+1=0\)\(\Leftrightarrow2x=-1\)\(\Leftrightarrow x=\frac{-1}{2}\)

Vậy \(minA=1\Leftrightarrow x=\frac{-1}{2}\)

b) \(B=\sqrt{2x^2-4x+5+1}=\sqrt{2x^2-4x+2+3+1}=\sqrt{2\left(x^2-2x+1\right)+4}\)

\(=\sqrt{2\left(x-1\right)^2+4}\)

Vì \(\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow2\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow2\left(x-1\right)^2+4\ge4\forall x\)

\(\Rightarrow B\ge\sqrt{4}=2\)

Dấu " = " xảy ra \(\Leftrightarrow x-1=0\)\(\Leftrightarrow x=1\)

Vậy \(minB=2\Leftrightarrow x=1\)

Bình luận (0)
 Khách vãng lai đã xóa
TL
21 tháng 8 2020 lúc 15:34

Mơn bạn nha

Bình luận (0)
 Khách vãng lai đã xóa
QN
Xem chi tiết
PD
7 tháng 9 2018 lúc 22:09

\(a,M=x^2+4x+5\)

\(M=x^2+2.x.2+2^2+1\)

\(M=\left(x+2\right)^2+1\ge1\)

Dấu "=" xảy ra khi x = -2

Vậy Min M = 1 <=> x = -2

b, Đặt \(A=9x^2-6x+6\)

\(A=\left(3x\right)^2-2.3x+1+5\)

\(A=\left(3x-1\right)^2+5\ge5\)

Dấu "=" xảy ra khi x = 1/3

Vậy Min A = 5 <=> x = 1/3

Bình luận (0)
SM
7 tháng 9 2018 lúc 22:10

a) M = x2 + 4x  + 5 

        = x2 + 4x + 4 + 1

        = ( x + 2 )2 + 1

Nhận xét :

( x + 2 )2 > 0 với mọi x

=>  ( x + 2 )2 + 1  > 1

=> M > 1

Dấu " = " xảy ra khi : ( x + 2 )2 = 0

                                => x + 2 = 0

                                 => x = - 2

Vậy giá trị nhỏ nhất của M = 1 khi x = - 2

b) N =  9x2 - 6x + 6

=  9x2 - 6x + 1 + 5 

= ( 3x + 1 )2 + 5

Nhận xét :

( 3x + 1 )2 > 0 với mọi x

=>  ( 3x + 1 )2 + 5 > 5

=> N > 5 

Dấu " = " xảy ra khi : ( 3x + 1 )2 = 0

                               => 3x + 1 = 0

                                => x = \(-\frac{1}{3}\)

Vậy giá trị nhỏ nhất của N = 5 khi x = \(-\frac{1}{3}\) 

Bình luận (0)
PN
Xem chi tiết
XO
27 tháng 7 2021 lúc 15:21

Đặt A 9x2 + 6x - 1 = 9x2 + 6x + 1 - 2 = (3x + 1)2 - 2 \(\ge\)-2

=> Min A = -2

Dấu "=" xảy ra <=> 3x + 1 = 0 

<=> x = -1/3

Vậy Min A = -2 <=> x = -1/3 

Bình luận (0)
 Khách vãng lai đã xóa
DC
27 tháng 7 2021 lúc 15:22

=-1/3 nha

Bình luận (0)
 Khách vãng lai đã xóa
QA
27 tháng 7 2021 lúc 15:42

Trả lời:

1, \(9x^2+6x-1=9x^2+6x+1-2=\left(3x+1\right)^2-2\ge-2\forall x\)

Dấu "=" xảy ra khi 3x + 1 = 0 <=> x = - 1/3

Vậy GTNN của bt = - 2 khi x = - 1/3

Bình luận (0)
 Khách vãng lai đã xóa
HN
Xem chi tiết
NT
3 tháng 5 2021 lúc 10:05

\(A=x^2-4x+10=x^2-4x+4+6=\left(x-2\right)^2+6\ge6\)

Vậy GTNN A là 6 khi x - 2 = 0 <=> x = 2 

\(B=\left(1-x\right)\left(3x-4\right)=3x-4-3x^2+4x=-3x^2+7x-4\)

\(=-3\left(x^2-\frac{7}{3}x+\frac{4}{3}\right)=-3\left(x^2-2.\frac{7}{6}x+\frac{49}{36}-\frac{1}{36}\right)=-3\left(x-\frac{7}{6}\right)^2+\frac{1}{12}\ge\frac{1}{12}\)

\(=3\left(x-\frac{7}{6}\right)^2-\frac{1}{12}\le-\frac{1}{12}\)Vậy GTLN B là -1/12 khi x = 7/6 

Bình luận (0)
 Khách vãng lai đã xóa
NT
3 tháng 5 2021 lúc 10:11

\(C=3x^2-9x+5=3\left(x^2-3x+\frac{5}{3}\right)=3\left(x^2-2.\frac{3}{2}x+\frac{9}{4}-\frac{7}{12}\right)\)

\(=3\left(x-\frac{3}{2}\right)^2-\frac{7}{4}\ge-\frac{7}{4}\)Vậy GTNN C là -7/4 khi x = 3/2 

\(D=-2x^2+5x+2=-2\left(x^2-\frac{5}{2}x-1\right)=-2\left(x^2-2.\frac{5}{4}x+\frac{25}{16}-\frac{41}{16}\right)\)

\(=-2\left(x-\frac{5}{4}\right)^2+\frac{21}{8}\le\frac{21}{8}\)Vậy GTLN D là 21/8 khi x = 5/4 

Bình luận (0)
 Khách vãng lai đã xóa