Những câu hỏi liên quan
H24
Xem chi tiết
GS
29 tháng 12 2015 lúc 6:16

lớp 1 chưa hok đâu bn tick nha

Bình luận (0)
TM
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
NL
9 tháng 1 2024 lúc 22:23

ĐKXĐ: \(x\ge-2;y\ge0\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x+2}=a\ge0\\\sqrt{y}=b\ge0\end{matrix}\right.\) pt đầu trở thành:

\(a\left(a^2+1\right)=b\left(ab+1\right)\)

\(\Leftrightarrow a^3+a=ab^2+b\)

\(\Leftrightarrow a^3-ab^2+a-b=0\)

\(\Leftrightarrow a\left(a^2-b^2\right)+a-b=0\)

\(\Leftrightarrow a\left(a-b\right)\left(a+b\right)+a-b=0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+1\right)=0\)

\(\Leftrightarrow a-b=0\) (do \(a^2+ab+1>0;\forall a\ge0;b\ge0\))

\(\Leftrightarrow\sqrt{x+2}=\sqrt{y}\)

\(\Rightarrow y=x+2\)

Thế vào pt dưới:

\(x^2+\left(x+3\right)\left(x+3\right)=x+16\)

\(\Leftrightarrow2x^2+5x-7=0\Rightarrow\left[{}\begin{matrix}x=1\Rightarrow y=3\\x=-\dfrac{7}{2}< -2\left(loại\right)\end{matrix}\right.\)

Bình luận (0)
HT
Xem chi tiết
NT
29 tháng 12 2021 lúc 22:23

d: \(\Leftrightarrow\left\{{}\begin{matrix}x+y=1\\4x+3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x+4y=4\\4x+3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=2\end{matrix}\right.\)

Bình luận (0)
BA
Xem chi tiết
ML
Xem chi tiết
H24
Xem chi tiết
HL
Xem chi tiết
NM
15 tháng 12 2021 lúc 7:38

\(ĐK:x,y\in R\)

Từ 2 PT \(\Leftrightarrow\sqrt{\left(x+1\right)^2+\left(y-1\right)^2}=\sqrt{\left(x-5\right)^2+\left(y+1\right)^2}\)

\(\Leftrightarrow x^2+2x+y^2-2y+2=x^2-10x+y^2+2y+26\\ \Leftrightarrow12x-4y-24=0\\ \Leftrightarrow3x-y-6=0\\ \Leftrightarrow y=3x-6\)

Thay vào \(PT\left(1\right)\Leftrightarrow\sqrt{\left(x-1\right)^2+\left(3x-8\right)^2}=\sqrt{\left(x+1\right)^2+\left(3x-7\right)^2}\)

\(\Leftrightarrow10x^2-50x+65=10x^2-40x+50\\ \Leftrightarrow10x=15\Leftrightarrow x=\dfrac{3}{2}\Leftrightarrow y=-\dfrac{3}{2}\)

Vậy hệ có nghiệm \(\left(x;y\right)=\left(\dfrac{3}{2};-\dfrac{3}{2}\right)\)

Bình luận (0)
PQ
Xem chi tiết
PQ
13 tháng 11 2019 lúc 21:26

\(\Rightarrow\left|a\right|\le1\),\(\left|b\right|\le1\),\(\left|c\right|\le1\)

\(\Rightarrow1-a\ge0\)tương tự 1-b,1-c............

\(\Rightarrow\left(1\right)\ge0\)

dấu = khi a=1b=0c=0 và hoán vị

Bình luận (0)
 Khách vãng lai đã xóa
NL
13 tháng 11 2019 lúc 21:35

Đang nổi cơn làm biếng mà nhìn thấy hệ còn buồn ngủ hơn:

a/ \(\Leftrightarrow\left\{{}\begin{matrix}\left(x^2-2x\right)\left(2x-y\right)=6\\x^2-2x-2\left(2x-y\right)=1\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x^2-2x=a\\2x-y=b\end{matrix}\right.\) ta được:

\(\left\{{}\begin{matrix}ab=6\\a-2b=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}ab=6\\a=2b+1\end{matrix}\right.\)

\(\Rightarrow b\left(2b+1\right)=6\Leftrightarrow2b^2+b-6=0\)

\(\Leftrightarrow...\)

b/ ĐKXĐ: ...

\(\Leftrightarrow\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{y}}+\sqrt{2-\frac{1}{y}}-\sqrt{2-\frac{1}{x}}=0\)

\(\Leftrightarrow\frac{\sqrt{y}-\sqrt{x}}{\sqrt{xy}}+\frac{\frac{1}{x}-\frac{1}{y}}{\sqrt{2-\frac{1}{y}}+\sqrt{2-\frac{1}{x}}}=0\)

\(\Leftrightarrow\frac{\sqrt{y}-\sqrt{x}}{\sqrt{xy}}+\frac{y-x}{xy\left(\sqrt{2-\frac{1}{y}}+\sqrt{2-\frac{1}{x}}\right)}=0\)

\(\Leftrightarrow\frac{\sqrt{y}-\sqrt{x}}{\sqrt{xy}}+\frac{\left(\sqrt{y}-\sqrt{x}\right)\left(\sqrt{y}+\sqrt{x}\right)}{xy\left(\sqrt{2-\frac{1}{y}}+\sqrt{2-\frac{1}{x}}\right)}=0\)

\(\Leftrightarrow\left(\sqrt{y}-\sqrt{x}\right)\left(\frac{1}{\sqrt{xy}}+\frac{\sqrt{y}+\sqrt{x}}{xy\left(\sqrt{2-\frac{1}{y}}+\sqrt{2-\frac{1}{x}}\right)}\right)=0\)

\(\Leftrightarrow\sqrt{y}=\sqrt{x}\Rightarrow x=y\)

Thay vào pt đầu:

\(\frac{1}{\sqrt{x}}+\sqrt{2-\frac{1}{x}}=2\)

\(\Leftrightarrow\frac{1}{x}+2-\frac{1}{x}+2\sqrt{\frac{2}{x}-\frac{1}{x^2}}=4\)

\(\Leftrightarrow\sqrt{\frac{2}{x}-\frac{1}{x^2}}=1\)

\(\Leftrightarrow\frac{2}{x}-\frac{1}{x^2}=1\)

\(\Leftrightarrow\left(\frac{1}{x}-1\right)^2=0\)

Bình luận (0)
 Khách vãng lai đã xóa
NL
13 tháng 11 2019 lúc 21:40

c/ \(\Leftrightarrow\left\{{}\begin{matrix}xy+x+y=7\\x^2+y^2+x+y+xy=17\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}xy+x+y=7\\x^2+y^2=10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}xy+x+y=7\\\left(x+y\right)^2-2xy=10\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x+y=a\\xy=b\end{matrix}\right.\) với \(a^2\ge4b\) ta được:

\(\left\{{}\begin{matrix}a+b=7\\a^2-2b=10\end{matrix}\right.\) \(\Rightarrow a^2+2a-24=0\Rightarrow\left[{}\begin{matrix}a=4;b=3\\a=-6;b=13\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x+y=4\\xy=3\end{matrix}\right.\) \(\Rightarrow\left(x;y\right)=\left(1;3\right);\left(3;1\right)\)

Bình luận (0)
 Khách vãng lai đã xóa