Chứng minh rằng: với 4 số a,b,c,d tùy ý ta có:
\(a^2+b^2+c^2+d^2\ge ab+ac+ad\)
chứng minh rằng Với 4 số a,b,c,d tùy ý ta có a2+b2+c2+d2>ab+ac+ad
không đúng lớp rồi
Chứng minh rằng với a,b,c,d,e là các số thực ta có \(a^2+b^2+c^2+d^2+e^2\ge ab+ab+ac+ad+ae\)
ae vứt 1 ab ra nha
\(a^2+b^2+c^2+d^2+e^2\ge ab+ac+ad+ae\)
\(\Leftrightarrow a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)
\(\Leftrightarrow4\left(a^2+b^2+c^2+d^2+e^2\right)\ge4a\left(b+c+d+e\right)\)
\(\Leftrightarrow\left(a^2-4ab+4b^2\right)+\left(a^2-4ac+4c^2\right)+\left(a^2-4ad+4d^2\right)+\left(a^2-4ac+4c^2\right)\ge0\)
\(\Leftrightarrow\left(a-2b\right)^2+\left(a-2c\right)^2+\left(a-2d\right)^2+\left(a-2e\right)^2\ge0\)
Bất đẳng thức đúng vậy ta có điều phải chứng minh
Chứng minh rằng với a, b, c, d tùy ý ta luôn có:
\(a^2+b^2+c^2+d^2\ge\left(a+b\right)\left(c+d\right)\)
dễ lăm chỉ cần áp dụng bài toán phụ a2+b2>=2ab là ra chúc bạn làm được bài tốt nhé mình chỉ gợi ý cho thôi
vũ tiền châu: Bạn có thể nói rõ hơn một chút được không ạ? Vậy có cần biến đổi c^2+ d^2>=2cd không?
Chứng minh với 3 số a , b , c tùy ý , ta có :
a2 + b2 + 1 \(\ge\)ab + a + b
Ta có : \(a^2+b^2+1\ge ab+a+b\)
\(\Leftrightarrow2a^2+2b^2+2\ge2ab+2a+2b\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2\ge0\) ( luôn đúng )
\(\Rightarrow a^2+b^2+1\ge ab+a+b\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=1\)
Cách khác : Dùng HĐT quen thuộc :
\(a^2+1\ge2a\)
\(b^2+1\ge2b\)
\(a^2+b^2\ge2ab\)
Cộng các vế của BĐT, rồi chia 2 ta được BĐT cần chứng minh.
Cho a,b,c là 3 số thực dương tùy ý Chứn minh rằng
\(\dfrac{a}{\sqrt{ab+b^2}}+\dfrac{b}{\sqrt{bc+b^2}}+\dfrac{c}{\sqrt{ac+a^2}}\ge\dfrac{3\sqrt{2}}{2}\)
\(\sum\dfrac{a}{\sqrt{ab+b^2}}=\sum\dfrac{a\sqrt{2}}{\sqrt{2b\left(a+b\right)}}\ge\sum\dfrac{2\sqrt{2}a}{2b+a+b}=2\sqrt{2}\sum\dfrac{a}{a+3b}\)
\(=2\sqrt{2}\sum\dfrac{a^2}{a^2+3ab}\ge\dfrac{2\sqrt{2}\left(a+b+c\right)^2}{a^2+b^2+c^2+3\left(ab+bc+ca\right)}\)
\(=\dfrac{2\sqrt{2}\left(a+b+c\right)^2}{\left(a+b+c\right)^2+ab+bc+ca}\ge\dfrac{2\sqrt{2}\left(a+b+c\right)^2}{\left(a+b+c\right)^2+\dfrac{1}{3}\left(a+b+c\right)^2}=\dfrac{3\sqrt{2}}{2}\)
Chứng minh các số thực a, b, c tùy ý, ta có a4 + b4 + c4 +1\(\ge\)2a(ab2 - a + c+ 1)
giả sử: a4 + b4+c4+1 > 2a( ab2-a+c+1)
<=> a^4-2(ab)^2 + b^4 + a^2-2ac+c^2 + a^2-2a+1>0 ( bạn chuyển vế rùi tách ra như mình nha)
<=> (a^2-b^2)^2 + (a-c)^2 + (a-1)^2 >0 (1)
nhận thấy (a^2-b^2)^2>=0
(a-c)^2>=0
(a-1)^2 >= 0
=> (1) luôn đúng
Chứng minh rằng: a^2 + b^2 + c^2 > hoặc = ab + ac + bc với a; b; c tùy ý
Giả sử:
2a^2 + 2b^2 + 2c^2 > hoặc = 2ab + 2ac + 2bc
<=>( a^2 -2ab + b^2) + (a^2 -2ac + c^2)+(b^2 -2bc + c^2) > hoặc = 0
=<=>(a-b)^2 + (a-c)^2 + (b-c)^2 > hoặc = 0 ( BĐT luôn đúng ) => 2a^2 + 2b^2 + 2c^2 >hoặc = 2ab + 2ac + 2bc là đúng ! <=> a^2 + b^2 + c^2 > hoặc = ab+bc+ac.
Dấu = xảy ra khi : a=b=c
Chứng minh rằng với mọi a,b,c dương thì :
\(\frac{\left(a+b+c+d\right)^2}{4\left(ab+ac+ad+bc+bd+cd\right)}\ge\frac{2}{3}\)
Ta có : \(\frac{\left(a+b+c+d\right)^2}{4\left(ab+ac+ad+bc+bd+cd\right)}\ge\frac{2}{3}\)
\(\Leftrightarrow3\left(a+b+c+d\right)^2\ge8\left(ab+ac+ad+bc+bd+cd\right)\)
\(\Leftrightarrow3\left(a^2+b^2+c^2+d^2\right)+6\left(ab+ac+ad+bc+bd+cd\right)\ge8\left(ab+ac+ad+bc+bd+cd\right)\)
\(\Leftrightarrow3\left(a^2+b^2+c^2+d^2\right)-2\left(ab+ac+ad+bc+bd+cd\right)\ge0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(a^2-2ad+d^2\right)+\left(b^2-2bc+c^2\right)+\left(b^2-2bd+d^2\right)+\left(c^2-2cd+d^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(a-d\right)^2+\left(b-c\right)^2+\left(b-d\right)^2+\left(c-d\right)^2\ge0\) (luôn đúng)
Vậy bđt ban đầu được chứng minh
a) chứng minh rằng a2 + ab + b2 >= 0 với mọi số thực a , b ; b) chứng minh rằng với 2 số thực a , b tùy ý , ta có a4 + b4 >= a3b + ab3
a)\(a^2+ab+b^2=a^2+\dfrac{2ab}{2}+\left(\dfrac{b}{2}\right)^2+\dfrac{3b^2}{4}\)
\(=\left(a+\dfrac{b}{2}\right)^2+\dfrac{3b^2}{4}\ge0\forall a,b\)
b)\(a^4+b^4\ge a^3b+ab^3\)
\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a^3-b^3\right)\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\forall a,b\)