H24

Chứng minh rằng với mọi a,b,c dương thì : 

\(\frac{\left(a+b+c+d\right)^2}{4\left(ab+ac+ad+bc+bd+cd\right)}\ge\frac{2}{3}\)

HN
11 tháng 9 2016 lúc 12:25

Ta có : \(\frac{\left(a+b+c+d\right)^2}{4\left(ab+ac+ad+bc+bd+cd\right)}\ge\frac{2}{3}\)

\(\Leftrightarrow3\left(a+b+c+d\right)^2\ge8\left(ab+ac+ad+bc+bd+cd\right)\)

\(\Leftrightarrow3\left(a^2+b^2+c^2+d^2\right)+6\left(ab+ac+ad+bc+bd+cd\right)\ge8\left(ab+ac+ad+bc+bd+cd\right)\)

\(\Leftrightarrow3\left(a^2+b^2+c^2+d^2\right)-2\left(ab+ac+ad+bc+bd+cd\right)\ge0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(a^2-2ad+d^2\right)+\left(b^2-2bc+c^2\right)+\left(b^2-2bd+d^2\right)+\left(c^2-2cd+d^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(a-d\right)^2+\left(b-c\right)^2+\left(b-d\right)^2+\left(c-d\right)^2\ge0\) (luôn đúng)

Vậy bđt ban đầu được chứng minh

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
BM
Xem chi tiết
DD
Xem chi tiết
NV
Xem chi tiết
NV
Xem chi tiết
TT
Xem chi tiết
TT
Xem chi tiết
HQ
Xem chi tiết
H24
Xem chi tiết