Tìm m để hệ sau có nghiệm
\(\left\{{}\begin{matrix}x+y=3\\x^{2
}+y^2-3xy=m\end{matrix}\right.\)
tìm m ϵ Z để hệ phương trình sau có nghiệm nguyên
a) \(\left\{{}\begin{matrix}mx-y=1\\x+4\left(m+1\right)y=4m\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\left(m+1\right)x+\left(3m+1\right)y=2-m\\2x+\left(m+2\right)y=4\end{matrix}\right.\)
tìm m để hệ phương trình có nghiệm duy nhất
\(\left\{{}\begin{matrix}x+y+xy=3\\x^2+y^2+3\left(x+y\right)=m\end{matrix}\right.\)
nhân 2vao pt (1) rồi cộng với pt 2 ta có:
x^2+y^2+2xy+5(x+y)=6+m
=(x+y)^2+5(x+y)=6+m
=t^2+5t=6+m
=t^2+5t-6-m
pt co nghiem duy nhat khi delta=0
tự giải =)))))))))))))))))))))))))))))))))
tìm m để hệ pt có nghiệm
\(\left\{{}\begin{matrix}x=y^2-y+m\\y=x^2-x+m\end{matrix}\right.\)
lấy pt 1-pt 2 ta có
(x-y)=(y^2-x^2)-y+x
(x-y)(1-x-y+1)=0
=>x=y or x+y=2 thay vào hệ rồi giải tiếp
Lời giải:
Lấy PT $(1)$ trừ PT $(2)$ thu được:
$x^2-y^2=0$
$\Leftrightarrow x=y$ hoặc $x=-y$
Nếu $x=y$ thì HPT \(\Leftrightarrow \left\{\begin{matrix} x=y\\ x=x^2-x+m\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=y\\ x^2-2x+m=0\end{matrix}\right.\)
Để hpt có nghiệm thì $x^2-2x+m=0$ có nghiệm
$\Leftrightarrow \Delta'=1-m\geq 0$
$\Leftrightarrow m\leq 1$
Nếu $x=-y$ thì HPT \(\Leftrightarrow \left\{\begin{matrix} x=-y\\ x=x^2+x+m\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=-y\\ x^2+m=0\end{matrix}\right.\)
Để hpt có nghiệm $\Leftrightarrow x^2+m=0$ có nghiệm
$\Leftrightarrow \Delta=-m\geq 0\Leftrightarrow m\leq 0$
Kết hợp cả 2 TH ta thấy $m\leq 0$ thì hpt có nghiệm.
Tìm m để hệ có nghiệm: \(\left\{{}\begin{matrix}\sqrt{x+2}+\sqrt{y+3}=m\\x+y=2m-5\end{matrix}\right.\)
ĐKXĐ: \(\left\{{}\begin{matrix}x\ge-2\\y\ge-3\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x+2}=a\ge0\\\sqrt{y+3}=b\ge0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=m\\a^2-2+b^2-3=2m-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=m\\a^2+b^2=2m\end{matrix}\right.\)
\(\Leftrightarrow a^2+\left(m-a\right)^2=2m\)
\(\Leftrightarrow2a^2-2m.a+m^2-2m=0\) (1)
Hệ đã cho có nghiệm khi và chỉ khi (1) có 2 nghiệm không âm
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=m^2-2\left(m^2-2m\right)\ge0\\a_1+a_2=m\ge0\\a_1a_2=\dfrac{m^2-2m}{2}\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}0\le m\le4\\m\ge0\\\left[{}\begin{matrix}m\ge2\\m\le0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}m=0\\2\le m\le4\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x+\left(m+1\right)y=1\\4x-y=-2\end{matrix}\right.\)
1. Tìm các số nguyên m để hệ có nghiệm (x;y) là số nguyên
2. Tìm m để nghiệm hệ thỏa mãn \(x^2+y^2=0,25\)
Tìm m để hệ phương trình \(\left\{{}\begin{matrix}x^2+y^2+x+y=5\\xy\left(x+1\right)\left(y+1\right)=m\end{matrix}\right.\) có nghiệm
Giải phương trình:
\(x^3+x+6=2\left(x+1\right)\sqrt{3+2x-x^2}\)
Giải hệ \(\left\{{}\begin{matrix}\left|x\right|+y=-1\\x^2+y^2=m\end{matrix}\right.\). Tìm m để hệ pt có nghiệm
1. Tìm m để hệ có đúng 3 nghiệm \(\left\{{}\begin{matrix}xy\left(x-2\right)\left(y-6\right)=m\\x^2+y^2-2\left(x+3y\right)=3m\end{matrix}\right.\)
2. Tìm m để phương trình có duy nhất nghiệm thỏa mãn \(x\le3\):
\(x^2-\left(m+3\right)x+2m-1=0\)
1.
\(\left\{{}\begin{matrix}\left(x^2-2x\right)\left(y^2-6y\right)=m\\\left(x^2-2x\right)+\left(y^2-6y\right)=3m\end{matrix}\right.\)
Theo Viet đảo, \(x^2-2x\ge-1\) và \(y^2-6y\ge-9\) là nghiệm của:
\(t^2-3m.t+m=0\) (1)
Hệ đã cho có đúng 3 nghiệm khi và chỉ khi:
TH1: (1) có 1 nghiệm \(t_1=-1\) và 1 nghiệm \(t_2>-9\)
\(t=-1\Rightarrow1+3m+m=0\Rightarrow m=-\dfrac{1}{4}\)
\(\Rightarrow t_2=\dfrac{1}{4}\) (thỏa mãn)
TH2: (1) có 1 nghiệm \(t_1=-9\) và 1 nghiệm \(t_2>-1\)
\(t_1=-9\Rightarrow81+27m+m=0\Leftrightarrow m=-\dfrac{81}{28}\)
\(\Rightarrow t_2=\dfrac{9}{28}\) (thỏa mãn)
Vậy \(m=\left\{-\dfrac{1}{4};-\dfrac{81}{28}\right\}\)
2. Pt bậc 2 có nghiệm duy nhất thì nó là nghiệm kép
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=\left(m+3\right)^2-4\left(2m-1\right)=0\left(vô-nghiệm\right)\\\dfrac{m+3}{2}\le3\end{matrix}\right.\)
Ko tồn tại m thỏa mãn
Hoặc là ngôn ngữ đề bài có vấn đề, ý của người ra đề là "phương trình đã cho có 2 nghiệm, trong đó có đúng 1 nghiệm thỏa mãn \(x\le3\)"?
\(\left\{{}\begin{matrix}2x+y=3m-1\\x-2y=-m-3\end{matrix}\right.\)
Tìm m để hệ có nghiệm (x;y) thỏa mãn y=\(x^2\)
\(\left\{{}\begin{matrix}2x+y=3m-1\\x-2y=-m-3\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=\dfrac{3m-1-y}{2}\\\dfrac{3m-1-y}{2}-2y=-m-3\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=\dfrac{3m-1-y}{2}\\3m-1-y-4y=-2m-6\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=\dfrac{3m-1-y}{2}\\5y=5m+5\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=\dfrac{3m-1-y}{2}\\y=m+1\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=\dfrac{3m-1-m-1}{2}\\y=m+1\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=m-1\\y=m+1\end{matrix}\right.\)
Vậy hpt trên có nghiệm duy nhất \(\left\{{}\begin{matrix}x=m-1\\y=m+1\end{matrix}\right.\)
Ta có: y = x2 \(\Leftrightarrow\) m + 1 = (m - 1)2 \(\Leftrightarrow\) m + 1 = m2 - 2m + 1
\(\Leftrightarrow\) m2 - 3m = 0
\(\Leftrightarrow\) m(m - 3) = 0
\(\Leftrightarrow\) \(\left[{}\begin{matrix}m=0\\m-3=0\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}m=0\\m=3\end{matrix}\right.\)
Vậy m = 0; m = 3 thì hpt trên có nghiệm duy nhất và thỏa mãn y = x2
Chúc bn học tốt!