Những câu hỏi liên quan
BY
Xem chi tiết
ND
15 tháng 5 2021 lúc 19:03

Ta có: \(x\left(x+2y\right)^3-y\left(y+2x\right)^3=27\)

\(\Leftrightarrow x\left(x^3+6x^2y+12xy^2+8y^3\right)-y\left(y^3+6xy^2+12x^2y+8x^3\right)=27\)

\(\Leftrightarrow x^4+6x^3y+12x^2y^2+8xy^3-y^4-6xy^3-12x^2y^2-8x^3y=27\)

\(\Leftrightarrow\left(x^4-y^4\right)-2x^3y+2xy^3=27\)

\(\Leftrightarrow\left(x^2-y^2\right)\left(x^2+y^2\right)-2xy\left(x^2-y^2\right)=27\)

\(\Leftrightarrow\left(x^2-y^2\right)\left(x^2-2xy+y^2\right)=27\)

\(\Leftrightarrow\left(x+y\right)\left(x-y\right)^3=27\)

Vì x , y > 0 => \(x+y>0\Rightarrow\left(x-y\right)^3>0\Rightarrow x>y\)

Khi đó: \(\left(x-y\right)^3\in\left\{1;8;27\right\}\Rightarrow x-y\in\left\{1;2;3\right\}\)

Nếu \(\left(x-y\right)^3=1\Rightarrow\hept{\begin{cases}x-y=1\\x+y=27\end{cases}}\Rightarrow\hept{\begin{cases}x=14\\y=13\end{cases}}\)

Nếu \(\left(x-y\right)^3=8\Rightarrow\hept{\begin{cases}x-y=2\\x+y=\frac{27}{8}\end{cases}\left(ktm\right)}\)

Nếu \(\left(x-y\right)^3=27\Rightarrow\hept{\begin{cases}x-y=3\\x+y=1\end{cases}}\left(ktm\right)\)

Vậy x = 14 , y = 13

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NT
30 tháng 1 2023 lúc 20:26

a: Thay x=2 và y=y vào hệ, ta được:

my+2=2 và 2m-2y=1

=>my=0 và 2m-2y=1

=>\(m\in\varnothing\)

b: \(\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\m\left(2-my\right)-2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\2m-m^2y-2y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\y\left(-m^2-2\right)=1-2m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2m-1}{m^2+2}\\x=2-\dfrac{2m^2-m}{m^2+2}=\dfrac{2m^2+4-2m^2+m}{m^2+2}=\dfrac{m+4}{m^2+2}\end{matrix}\right.\)

Để \(S=2x-y=\dfrac{2m+8-2m+1}{m^2+2}=\dfrac{7}{m^2+2}_{MAX}\) thì m^2+2 min

=>m=0

Bình luận (0)
H24
Xem chi tiết
DD
17 tháng 11 2017 lúc 20:21

Tui vừa trả lời 3 bài này ở câu của Nguyễn Anh Quân

Xem tui giải đúng không nha

Xin Wrecking Ball nhận xét

Bình luận (0)
H24
17 tháng 11 2017 lúc 20:22

Đỗ Đức Đạt cop trên Yahoo

Bình luận (0)
XT
17 tháng 11 2017 lúc 20:23

1...Chia cả hai vế cho xyz ta được 
3xy/xyz + 3yz/xyz + 3zx/xyz = 4xyz/xyz 
<=>3/x + 3/y + 3/z = 4 
<=>1/x + 1/y + 1/z = 4/3 
Vì x,y,z bình đẳng nên giả sử 0<x<=y<=z 
+nếu x>=4=> y>=4;z>=4 
=> 1/x + 1/y + 1/z <= 1/4 + 1/4 + 1/4 =3/4 < 4/3 => pt vô nghiệm 
+nếu x=1 => 1+1/y+1/z=4/3 
<=> 1/y+1/z=1/3 
<=> 3(y+z)=yz 
<=> 3y+3z-yz=0 
<=> 3y-yz+3z-9=-9 
<=> y(3-z)-3(3-z)=-9 
<=> (3-z)(3-y)=9 
Vì y,z nguyên dương nên (3-y),(3-z) nguyên dương 
mà 9=3*3=1*9=9*1 
==>3-z=3 và 3-y=3 => z=0 và y=0 (loại vì y,z nguyên dương) 
+nếu x=2 => 1/2+1/y+1/z=4/3 
<=> 1/y+1/z=5/6 
<=> 6(y+z)=5yz 
<=> 6y+6z-5yz=0 
<=> 30y-25yz+30z-36=-36 
<=> 5y(6-5z)-6(6-5z)=-36 
<=> (5z-6)(5y-6)=36 
Vì y,z nguyên dương nên (5y-6),(5z-6) nguyên dương 
mà 36=6*6=2*18=18*2=3*12=12*3=4*9=9*4 
Giải tương tự phần trên ta được 
y=2,z=3 hoặc y=3,z=2 
+nếu x=3 => 1/3+1/y+1/z=4/3 
<=> 1/y+1/z=1 
Giải tương tự phần trên ta được y=z=2 
Vậy (x;y;z)=(2;2;3);(2;3;2);(3;2;2)

MK cop nhưng ủng hộ mk nha , mk có lòng trả lời

Bình luận (0)
VQ
Xem chi tiết
KD
11 tháng 11 2016 lúc 15:29

Hỏi đáp Toán

ko phải bài của mk nên bn ko tick cx đc,mk chỉ đăng lên để giúp bn thôi

Bình luận (1)
H24
Xem chi tiết
HS
Xem chi tiết
NH
6 tháng 3 2022 lúc 22:19

\(pt\Leftrightarrow x^2-x+2x-2+2y^2-2xy^2+y-xy=1\\ \Leftrightarrow\left(1-x\right)\left(2y^2+y-x-2\right)=1\)

e tự xét 2 th ra

Bình luận (0)
VT
Xem chi tiết
TN
24 tháng 11 2017 lúc 12:58

2x3-x2y+3x2+2x-y=2

(2x3+2x)-(x2y+y)+(3x2+3)=5

2x(x2+1)-y(x2+1)+3(x2+1)=5

(x2+1)(2x-y+3)=5

Mà x2>=0 => x2+1>0

=> (x2+1)(2x-y+3)=5=1.5=5.1

•x2+1=1 và 2x-y+3=5 => x=0; y=-2

•x2+1=5 và 2x-y+3=1=> x=2;y=6 hoặc x=-2; y=-2

Vậy (x;y) là (0;-2);(2;6);(-2;-2)

Bình luận (0)
DD
Xem chi tiết
DD
30 tháng 7 2016 lúc 10:21

giup vsssssss mn

Bình luận (0)
HN
25 tháng 8 2018 lúc 13:32

bn ơi bn lm đc bài này ko giúp mik vs

tìm x;y trong phương trình nghiệm nguyên sau:

a)x^2+y^2-2.(3x-5y)=11                b)x^2+4y^2=21+6x

Bình luận (0)
MP
Xem chi tiết
NL
7 tháng 1 2021 lúc 15:57

\(5x^2+2\left(3y+1\right)x+2y^2+2y-73=0\) (1)

\(\Delta'=\left(3y+1\right)^2-5\left(2y^2+2y-73\right)=-y^2-4y+366\)

\(\Delta'\) là số chính phương \(\Rightarrow-y^2-4y+366=k^2\)

\(\Leftrightarrow\left(y+2\right)^2+k^2=370=3^2+19^2=9^2+17^2\)

\(\Rightarrow\left[{}\begin{matrix}y+2=3\\y+2=19\\y+2=9\\y+2=17\end{matrix}\right.\) thế vào (1) tìm x nguyên dương

Bình luận (4)