Những câu hỏi liên quan
H24
Xem chi tiết
NL
31 tháng 3 2021 lúc 5:30

\(x+y=\sqrt{x+6}+\sqrt{y+6}\ge0\Rightarrow x+y\ge0\)

\(x+y=\sqrt{x+6}+\sqrt{y+6}\le\sqrt{2\left(x+y+12\right)}\)

\(\Rightarrow\left(x+y\right)^2\le2\left(x+y+12\right)\)

\(\Rightarrow\left(x+y+4\right)\left(x+y-6\right)\le0\)

\(\Rightarrow x+y\le6\) (do \(x+y+4>0\))

\(P_{max}=6\) khi \(x=y=3\)

\(x+y=\sqrt{x+6}+\sqrt{y+6}\)

\(\Rightarrow\left(x+y\right)^2=x+y+12+2\sqrt{\left(x+6\right)\left(y+6\right)}\ge x+y+12\)

\(\Rightarrow\left(x+y\right)^2-\left(x+y\right)-12\ge0\)

\(\Rightarrow\left(x+y+3\right)\left(x+y-4\right)\ge0\)

\(\Rightarrow x+y-4\ge0\) (do \(x+y+3>0\))

\(\Rightarrow x+y\ge4\)

\(P_{min}=4\) khi \(\left(x;y\right)=\left(-6;10\right)\) và hoán vị

Bình luận (0)
TH
30 tháng 3 2021 lúc 21:40

Ta có: x - \(\sqrt{x+6}\) = \(\sqrt{y+6}\) - y (x; y \(\ge\) -6)

\(\Leftrightarrow\) P = x + y  = \(\sqrt{x+6}+\sqrt{y+6}\)

\(\Leftrightarrow\) P2 = x + y + 12 + 2\(\sqrt{\left(x+6\right)\left(y+6\right)}\)

Áp dụng BĐT Cô-si cho 2 số ko âm x + 6 và y + 6 ta có:

\(x+y+12\ge2\sqrt{\left(x+6\right)\left(y+6\right)}\)

\(\Leftrightarrow\) P2 \(\le\) x + y + 12 + x + y + 12 = 2x + 2y + 24 = 2P + 24

\(\Leftrightarrow\) P2 - 2P - 24 \(\le\) 0

\(\Leftrightarrow\) P2 - 36 + 12 - 2P \(\le\) 0

\(\Leftrightarrow\) (P - 6)(P + 6) + 2(6 - P) \(\le\) 0

\(\Leftrightarrow\) (P - 6)(P + 4) \(\le\) 0

\(\Leftrightarrow\) \(\left[{}\begin{matrix}\left\{{}\begin{matrix}P-6\ge0\\P+4\le0\end{matrix}\right.\\\left\{{}\begin{matrix}P-6\le0\\P+4\ge0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left[{}\begin{matrix}-4\ge P\ge6\left(KTM\right)\\6\ge P\ge-4\left(TM\right)\end{matrix}\right.\)

\(\Rightarrow\) -4 \(\le\) P \(\le\) 6

Vậy ...

Chúc bn học tốt!

Bình luận (0)
VL
Xem chi tiết
DH
Xem chi tiết
TC
1 tháng 4 2022 lúc 17:33

giải bằng Bunhiaskopki nha bạn, search gg

Bình luận (0)
XO
1 tháng 4 2022 lúc 17:34

Ta có P \(\le\dfrac{1^2+\left(\sqrt{x-1}\right)^2}{2}+\dfrac{2^2+\left(\sqrt{y-4}\right)^2}{2}+\dfrac{3^2+\left(\sqrt{z-9}\right)^2}{2}\)

\(=\dfrac{1+x-1+4+y-4+9+z-9}{2}=\dfrac{x+y+z}{2}=\dfrac{28}{2}=14\)

Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}1=\sqrt{x-1}\\2=\sqrt{y-4}\\3=\sqrt{z-9}\end{matrix}\right.\Leftrightarrow x=2;y=8;z=18\)(tm) 

Bình luận (0)
TB
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
DH
Xem chi tiết
DD
14 tháng 6 2019 lúc 17:45

Mình nghĩ là làm như này nè:
Dễ cm:
+: \(\left(a+b\right)^2\le\)\(2\left(a^2+b^2\right)\)(với mọi a, b) ... Áp dụng => \(\left(x+y\right)^2\le\)\(2\)<=> \(-\sqrt{2}\le x+y\)\(\le\sqrt{2}\)
+: \(\sqrt{a+b}\le\)\(\sqrt{a}+\sqrt{b}\)\(\le\sqrt{2\left(a+b\right)}\)(Cái đầu dùng tương đương còn cái hai dùng bđt BCS)
ÁP dụng =>\(\sqrt{8-5\sqrt{2}}\le\) \(\sqrt{8+5\left(x+y\right)}\le\)\(T\)\(\le\sqrt{16+10\left(x+y\right)}\)\(\le\sqrt{16+10\sqrt{2}}\)
Dấu "=" <=> ...

Bình luận (0)
D2
14 tháng 6 2019 lúc 18:06

Bạn @Đậu Đậu gì đó ơi, Bạn giải tới đó thì max=\(16+10\sqrt{2}\)thì mình hiểu rồi , còn min =??? ghi rõ hộ mình nhé

Bình luận (0)
DD
14 tháng 6 2019 lúc 18:14

\(\sqrt{a+b}\le\)\(\sqrt{a}+\sqrt{b}\)

<=> a+b \(\le a+b+2\sqrt{ab}\)<=> \(\sqrt{ab}\ge0\)ĐÚNG
Thì áp dụng thôi

Bình luận (0)
HV
Xem chi tiết
VH
23 tháng 7 2023 lúc 22:00

a) \(\left\{{}\begin{matrix}a=x\\b=2y\\c=3z\end{matrix}\right.\Rightarrow a+b+c=2;a,b,c>0\)

\(\Rightarrow S=\sqrt{\dfrac{\dfrac{ab}{2}}{\dfrac{ab}{2}+c}}+\sqrt{\dfrac{\dfrac{bc}{2}}{\dfrac{bc}{2}+a}}+\sqrt{\dfrac{ca}{ca+2b}}\)

\(=\sqrt{\dfrac{ab}{ab+2c}}+\sqrt{\dfrac{bc}{bc+2a}}+\sqrt{\dfrac{ca}{ca+2b}}\)

Vì a,b,c>0 nên áp dụng BĐT AM-GM, ta có: 

 \(\sqrt{\dfrac{ab}{ab+2c}}=\sqrt{\dfrac{ab}{ab+\left(a+b+c\right)c}}=\sqrt{\dfrac{ab}{c^2+bc+ca+ab}}=\sqrt{\dfrac{ab}{\left(a+c\right)\left(b+c\right)}}\)

\(=\sqrt{\dfrac{a}{a+c}}.\sqrt{\dfrac{b}{b+c}}\le\dfrac{1}{2}\left(\dfrac{a}{a+c}+\dfrac{b}{b+c}\right)\) 

\(\sqrt{\dfrac{bc}{bc+2a}}=\sqrt{\dfrac{bc}{\left(b+a\right)\left(c+a\right)}}\le\dfrac{1}{2}\left(\dfrac{b}{a+b}+\dfrac{c}{a+c}\right)\)

\(\sqrt{\dfrac{ca}{ca+2b}}=\sqrt{\dfrac{ca}{\left(c+b\right)\left(a+b\right)}}\le\dfrac{1}{2}\left(\dfrac{c}{b+c}+\dfrac{a}{a+b}\right)\)

\(\Rightarrow S\le\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{b}{a+b}\right)+\dfrac{1}{2}\left(\dfrac{b}{b+c}+\dfrac{c}{b+c}\right)+\dfrac{1}{2}\left(\dfrac{a}{a+c}+\dfrac{c}{a+c}\right)=\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}=\dfrac{3}{2}\)

Dấu "=" xảy ra khi và chỉ khi: a=b=c=2/3=>\(\left(x,y,z\right)=\left\{\dfrac{2}{3};\dfrac{1}{3};\dfrac{2}{9}\right\}\)

Bình luận (0)
PH
Xem chi tiết