tìm x, y ϵ Z biết
( x -5) (y -7) =1
Tìm x,y ϵ Z biết: \(\dfrac{5}{x}\)- \(\dfrac{y}{3}\)= \(\dfrac{1}{6}\)
Lời giải:
$\frac{5}{x}-\frac{y}{3}=\frac{1}{6}$
$\Rightarrow \frac{15-xy}{3x}=\frac{1}{6}$
$\Rightarrow \frac{2(15-xy)}{6x}=\frac{x}{6x}$
$\Rightarrow 2(15-xy)=x$
$\Rightarrow 30=2xy+x$
$\Rightarrow 30=x(2y+1)$
$\Rightarrow x=\frac{30}{2y+1}$
Vì $x$ nguyên nên $\frac{30}{2y+1}$ nguyên
$\Rightarrow 2y+1$ là ước của $30$
Vì $2y+1$ lẻ nên $2y+1\in\left\{\pm 1; \pm 3; \pm 5; \pm 15\right\}$
$\Rightarrow y\in\left\{-1; 0; -2; 1; -3; 2; -8; 7\right\}$
Tương ứng với các giá trị $y$ trên ta có: $x\in\left\{-30; 30; -10; 10; -6; 6; -2;2\right\}$
Tìm x, y ϵ Z biết :
(x + 1)(2y – 5) = 143
Ta thấy (x+1)(2y-5)=143=11.13=13.11=143.1=1.143
Suy ra ta có 4 trường hợp sau:
-Nếu x+1=11suy ra x=10 ; 2y-5=13 suy ra y=9
-Nếu x+1=13 suy ra x=12 ; 2y-5=11 suy ra y=8
-Nếu x+1=143 suy ra x=142 ; 2y-5=1 suy ra y=3
-Nếu x+1=1 suy ra x=0 ; 2y-5=143 suy ra y=74
Vậy x=10 thì y=9
x=12 thì y=8
x=142 thì y=3
x=0 thì y=74
1.tìm x,y biết
a, x.(y-3)≥0
b, (2.x-1).(y-1)≤0
c,(x-1).(2.k+1)≥0
2. tìm x,y ϵ Z biết
a, x(x+3)=0
b,(x-2).(5-x)=0
c,(x-1).(x^2+1)=0
d, x.y+3.x-7.y=21
e,x.y+3.x-2y=11
Bài 2:
a: =>x=0 hoặc x+3=0
=>x=0 hoặc x=-3
b: =>x-2=0 hoặc 5-x=0
=>x=2 hoặc x=5
c: =>x-1=0
hay x=1
Tìm x, y ϵ Z biết:
a) (x-2).(y+1)= 7
b) (2x-1)y -2x=1=3
a) (x - 2)(y + 1) = 7
=> x - 2, y + 1 ∈ Ư(7)
Vì x, y ∈ Z => x - 2, y + 1 ∈ Z
=> x - 2, y + 1 ∈ {1; -1; 7; -7}
Lập bảng giá trị:
x - 2 | 1 | 7 | -1 | -7 |
y + 1 | 7 | 1 | -7 | -1 |
x | 3 | 9 | 1 | -5 |
y | 6 | 0 | -8 | -2 |
Đối chiếu điều kiện x, y ∈ Z
=> Các cặp (x, y) cần tìm là:
(3; 6); (9; 0); (1; -8); (-5; -2)
(x-2)(y+1) = 7
=> x-2 và y+1 thuộc Ư(7) = {-1; 1; -7; 7}
ta có bảng :
x-2 | -1 | 1 | -7 | 7 |
y+1 | -7 | 7 | -1 | 1 |
x | 1 | 3 | -5 | 9 |
y | -8 | 6 | -2 | 0 |
vậy_
1.tìm x,y biết
a, x.(y-3)≥0
b, (2.x-1).(y-1)≤0
c,(x-1).(2.k+1)≥0
2. tìm x,y ϵ Z biết
a, x(x+3)=0
b,(x-2).(5-x)=0
c,(x-1).(x^2+1)=0
d, x.y+3.x-7.y=21
e,x.y+3.x-2y=11
GIẢI GIÚP MÌNH VỚI, MÌNH ĐANG CẦN GẤP LẮM Ạ!!!!!
Bài 2:
a: =>x=0 hoặc x=-3
b: =>x-2=0 hoặc 5-x=0
=>x=2 hoặc x=5
c: =>x-1=0
hay x=1
tìm x, y ϵ Z biết
( x -5) (y -7) =1
\(\left(x-5\right)\left(y-7\right)=1\\ \left(x-5\right)\left(y-7\right)=1\cdot1=\left(-1\right)\left(-1\right)\)
Ta có bảng sau:
x-5 | 1 | -1 |
x | 6 | 4 |
y-7 | 1 | -1 |
y | 8 | 6 |
Vậy \(\left(x;y\right)\in\left\{\left(6;4\right);\left(8;6\right)\right\}\)
Tìm x,y ϵ Z biết 3x+6xy+2y=7
\(3x+6xy+2y=7\)
\(\Leftrightarrow3x+6xy+1+2y=8\)
\(\Leftrightarrow3x\left(1+2y\right)+\left(1+2y\right)=8\)
\(\Leftrightarrow\left(3x+1\right)\left(1+2y\right)=8\)
Do \(1+2y\) luôn lẻ với y nguyên nên ta chỉ cần xét các cặp ước của 8 mà \(1+2y\) nhận giá trị lẻ là \(-1;1\)
1+2y | -1 | 1 |
3x+1 | -8 | 8 |
y | -1 | 0 |
x | -3 | 7/3(loại) |
Vậy \(\left(x;y\right)=\left(-3;-1\right)\) là nghiệm duy nhất
Tìm x, y, z ϵ Q , biết x(x + y + z) = -5; y(x + y + z) = 9; z(x + y + z) = 5
Gíup mình với mình đang cần gấp!!! Cảm ơn các bạn nhiều!!!!
Ai giải được cho 100 like!!!!!!!!
Từ 3 phương trình trên
\(\left(x+y+z\right)=\dfrac{-5}{x}=\dfrac{9}{y}=\dfrac{5}{z}=\dfrac{-5+9+5}{x+y+z}=\dfrac{9}{x+y+z}\)
\(\Rightarrow\left(x+y+z\right)^2=9\Rightarrow\left(x+y+z\right)=\pm3\)
+ Với \(x+y+z=3\) Thay vào từng phương trình ta có
\(x=-\dfrac{5}{3};y=3;z=\dfrac{5}{3}\)
+ Với \(x+y+z=-3\) Thay vào từng phương trình có
\(x=\dfrac{5}{3};y=3;z=-\dfrac{5}{3}\)
Sorry trường hợp thứ 2 \(y=-3\)
Tìm x , y ϵ Z biết :
\(a,\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\) và x + y + z = 49
\(b,\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}\)
Viết lại thành : \(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}\)
Dựa theo tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)
-> x = \(12.\dfrac{3}{2}=18\)
y =\(12.\dfrac{4}{3}=16\)
z =\(12.\dfrac{5}{4}\) = 15