tìm GTNN của (x+1)/(y)+1/(x-y),với x>y>0
Tìm GTNN của:
a) 1/x + 1/y với x>0, y>0 và x^2+y^2 =1
b) (1+x)(1+1/y) + (1+y)(1+1/x) với x>0, y>0 và x^2+y^2=1
Tìm GTNN của \(A=x+\dfrac{1}{y}+\dfrac{4}{x-y}\) (với \(x>y>0\)).
Lời giải:
$A=(x-y)+\frac{4}{x-y}+y+\frac{1}{y}$
Áp dụng BĐT Cô-si:
$(x-y)+\frac{4}{x-y}\geq 2\sqrt{(x-y).\frac{4}{x-y}}=4$
$y+\frac{1}{y}\geq 2$
$\Rightarrow A\geq 4+2=6$
Vậy $A_{\min}=6$ khi $(x,y)=(3,1)$
tìm GTNN của A=32x/y+2008y/x (với x,y>0 và x+1/y<=1)
cho x+y=1, x>0,y>0, Tìm GTNN của bt P=a^2/x+b^2 y ( với x;y là hằng số dương đã cho)
Đề như này pk em?
\(P=\dfrac{a^2}{x}+\dfrac{b^2}{y}\)
Áp dụng bđt Svac-xơ có:
\(P=\dfrac{a^2}{x}+\dfrac{b^2}{y}\ge\dfrac{\left(a+b\right)^2}{x+y}=\left(a+b\right)^2\)
Dấu = xảy ra <=>\(\dfrac{a}{x}=\dfrac{b}{y}\) và x+y=1
Ta có : \(\dfrac{a^2.1}{x}+\dfrac{b^2.1}{y}=\dfrac{a^2\left(x+y\right)}{x}+\dfrac{b^2\left(x+y\right)}{y}\) = \(a^2+\dfrac{a^2y}{x}+\dfrac{b^2x}{y}+b^2\) = \(\left(\dfrac{a^2y}{x}+\dfrac{b^2x}{y}\right)+a^2+b^2\)
Các số dương \(\dfrac{a^2y}{x}\) và \(\dfrac{b^2x}{y}\) có tích không đổi nên tổng của chung nhỏ nhất khi và chỉ khi
\(\dfrac{a^2y}{x}=\dfrac{b^2x}{y}\Leftrightarrow a^2y^2=b^2x^2\Leftrightarrow ay=bx\Leftrightarrow a\left(1-x\right)=bx\)
⇔ \(x=\dfrac{a}{a+b}\) ; \(y=\dfrac{b}{a+b}\)
Vậy GTNN của biểu thức \(\left(a+b\right)^2\) khi \(x=\dfrac{a}{a+b}\) và \(y=\dfrac{b}{a+b}\)
1.cho x > 0. tìm GTNN của A = \(\dfrac{3x^4+16}{x^3}\)
2. cho x,y,z > 0 thỏa mãn x+y+z=2. tìm GTNN của biểu thức:
P=\(\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\)
giúp mình với ạ, mình đang cần gấp trong tối nay ạ.
kẻ lười biếng nạp card, đi ô tô
1. Tìm GTNN của \(y=x+\dfrac{1}{x}-5\) trên \(\left(0,+\infty\right)\)
2. Tìm GTNN của \(y=4x^2+\dfrac{1}{x}-4\) trên \(\left(0,+\infty\right)\)
3. Tìm GTLN của \(y=\dfrac{x^2+4}{x}\) trên \(\left(-\infty,0\right)\)
\(y=x+\dfrac{1}{x}-5\ge2\sqrt{\dfrac{x}{x}}-5=-3\)
\(y_{min}=-3\) khi \(x=1\)
\(y=4x^2+\dfrac{1}{2x}+\dfrac{1}{2x}-4\ge3\sqrt[3]{\dfrac{4x^2}{2x.2x}}-4=-1\)
\(y_{min}=-1\) khi \(x=\dfrac{1}{2}\)
\(y=x+\dfrac{4}{x}\Rightarrow y'=1-\dfrac{4}{x^2}=0\Rightarrow x=-2\)
\(y\left(-2\right)=-4\Rightarrow\max\limits_{x>0}y=-4\) khi \(x=-2\)
Tìm GTNN (min y) của hàm số y = log 3 x 2 + x + 1 - log 3 x với x > 0.
A. 0
B. 1
C. 1 2
D. 1 3
Cho x,y>0 thỏa mãn (x+\(\sqrt{1+x^2}\))(y+\(\sqrt{1+y^2}\))=2018. Tìm GTNN của P=x+yGiúp mk với ạ, please
Đặt \(\left\{{}\begin{matrix}x+\sqrt{1+x^2}=a>0\\y+\sqrt{1+y^2}=b>0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}1+x^2=a^2+x^2-2ax\\1+y^2=b^2+y^2-2by\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{a^2-1}{2a}\\y=\dfrac{b^2-1}{2b}\end{matrix}\right.\)
Giả thiết trở thành: \(ab=2018\)
\(P=\dfrac{a^2-1}{2a}+\dfrac{b^2-1}{2b}=\dfrac{1}{2}\left(a+b\right)-\dfrac{a+b}{2ab}\)
\(P=\dfrac{1}{2}\left(a+b\right)\left(1-\dfrac{1}{ab}\right)=\dfrac{1}{2}\left(a+b\right).\dfrac{2017}{2018}\ge\sqrt{ab}.\dfrac{2017}{2018}=\dfrac{2017}{\sqrt{2018}}\)
\(P_{min}=\dfrac{2017}{\sqrt{2018}}\)
Dấu "=" xảy ra khi \(x=y=\dfrac{2017}{2\sqrt{2018}}\)
1) cho x>0,y>0 thỏa mãn x+y=1.tìm GTNN của biểu thức P= 1/xy+2/x^2+y^2
2)cho x>0,y>0 và x+y=1.tìm GTNN của M=3/xy+2/x^2+y^2
3)tìm GTNN và GTLN của
N= 2x+1/x^2+2
Q= 2x^2-2x+9/x^2+2x+5
R=2(x^2+x+1)/x^2+1
x,y>0 tìm gtnn của:
x^2 + y^2 +1/xy với x+y=2
Áp dụng 2 bất đẳng thức phụ:
\(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\).Dấu "=" xảy ra khi và chỉ khi \(x=y\)
\(xy\le\frac{\left(x+y\right)^2}{4}\).Dấu "=" xảy ra khi và chỉ khi \(x=y\)
Áp dụng vào bài toán,ta có:
\(x^2+y^2\ge2\)
\(xy\le1\Leftrightarrow\frac{1}{xy}\ge1\)
Khi đó,ta có:\(x^2+y^2+\frac{1}{xy}\ge3\)
Dấu "=" xảy ra khi \(x=y=1\)
Thêm 2 vào bớt 2 ra biến đổi và dùng Cô si là xong ạ? + Áp dụng BĐT \(xy\le\frac{\left(x+y\right)^2}{4}\) (cũng là hệ quả của cô si thôi)
Ta có: \(P=x^2+y^2+\frac{1}{xy}=\left(x^2+1\right)+\left(y^2+1\right)+\frac{1}{xy}-2\)
\(\ge2x+2y+\frac{1}{\frac{\left(x+y\right)^2}{4}}-2=2\left(x+y\right)+\frac{4}{\left(x+y\right)^2}-2\)
\(=2.2+\frac{4}{2^2}-2=5-2=3\)
Dấu "=" xảy ra khi x = y = 1
Vậy \(P_{min}=3\Leftrightarrow x=y=1\)