Violympic toán 9

DN

Cho x,y>0 thỏa mãn (x+\(\sqrt{1+x^2}\))(y+\(\sqrt{1+y^2}\))=2018. Tìm GTNN của P=x+yGiúp mk với ạ, please

NL
10 tháng 1 2021 lúc 18:14

Đặt \(\left\{{}\begin{matrix}x+\sqrt{1+x^2}=a>0\\y+\sqrt{1+y^2}=b>0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}1+x^2=a^2+x^2-2ax\\1+y^2=b^2+y^2-2by\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{a^2-1}{2a}\\y=\dfrac{b^2-1}{2b}\end{matrix}\right.\)

Giả thiết trở thành: \(ab=2018\)

\(P=\dfrac{a^2-1}{2a}+\dfrac{b^2-1}{2b}=\dfrac{1}{2}\left(a+b\right)-\dfrac{a+b}{2ab}\)

\(P=\dfrac{1}{2}\left(a+b\right)\left(1-\dfrac{1}{ab}\right)=\dfrac{1}{2}\left(a+b\right).\dfrac{2017}{2018}\ge\sqrt{ab}.\dfrac{2017}{2018}=\dfrac{2017}{\sqrt{2018}}\)

\(P_{min}=\dfrac{2017}{\sqrt{2018}}\)

Dấu "=" xảy ra khi \(x=y=\dfrac{2017}{2\sqrt{2018}}\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
HN
Xem chi tiết
MD
Xem chi tiết
DN
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết