cho a,b là các số không âm. CMR: (1+a+b)/2>_(1+a+b+ab)/2+a+b
Cho a,b,c là các số không âm .CMR:
\(\frac{1+a+b}{2}\ge\frac{1+a+b+ab}{2+a+b}\)
Mẫu không âm+ quy đồng
\(\frac{1+a+b}{2}\ge\frac{1+a+b+ab}{2+a+b}\)(1)
<=> \(2+3\left(a+b\right)+\left(a+b\right)^2\ge2+2a+2b+2ab\)
<=> \(a^2+b^2+a+b\ge0\) luôn đúng vì a; b không âm
Do đó (1) đúng
Dấu "=" xảy ra <=> a = b = 0
cho a;b;c là các số thục không âm . TM a+b+c=2. CMR ;
\(\frac{bc}{a^2+1}+\frac{ac}{b^2+1}+\frac{ab}{c^2+1}\le1\)
1.Xét 2 số thực không âm a,b thỏa mãn a+b≤6. Tìm giá trị lớn nhất của A=a2b(4-a-b)
2. Cho các số a,b,c∈R+ thỏa mãn a+b+c=3.CMR : a+ab+2abc≤\(\dfrac{9}{2}\)
3. Cho các số a,b ∈R+ phân biệt. CMR: (x+y)\(\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)+\(\dfrac{16}{\left(x-y\right)^2}\)≥12
1.
- Với \(a+b\ge4\Rightarrow A\le0\)
- Với \(a+b< 4\Rightarrow4-a-b>0\)
\(\Rightarrow A=\dfrac{a}{2}.\dfrac{a}{2}.b.\left(4-a-b\right)\)
\(\Rightarrow A\le\dfrac{1}{64}\left(\dfrac{a}{2}+\dfrac{a}{2}+b+4-a-b\right)^4=4\)
\(A_{max}=4\) khi \(\left(a;b\right)=\left(2;1\right)\)
2.
\(P=a+\dfrac{1}{2}.a.2b\left(1+2c\right)\le a+\dfrac{a}{8}\left(2b+1+2c\right)^2\)
\(P\le a+\dfrac{a}{8}\left(7-2a\right)^2=\dfrac{1}{8}\left(4a^3-28a^2+57a-36\right)+\dfrac{9}{2}\)
\(P\le\dfrac{1}{8}\left(a-4\right)\left(2a-3\right)^2+\dfrac{9}{2}\le\dfrac{9}{2}\)
Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(\dfrac{3}{2};1;\dfrac{1}{2}\right)\)
Câu 3 bạn xem lại đề, mình có thể chắc chắn với bạn là đề sai
Ví dụ bạn cho \(x=98,y=100\) thì vế trái chỉ lớn hơn 8 một chút
Đề đúng phải là: \(\left(x+y\right)\left(\dfrac{1}{x}+\dfrac{1}{y}\right)+\dfrac{16xy}{\left(x-y\right)^2}\ge12\)
Nếu câu 3 đề là \(\left(x+y\right)\left(\dfrac{1}{x}+\dfrac{1}{y}\right)+\dfrac{16xy}{\left(x-y\right)^2}\ge12\)
Ta có:
\(VT=2+\dfrac{x}{y}+\dfrac{y}{x}+\dfrac{16xy}{\left(x-y\right)^2}=\dfrac{x^2+y^2}{xy}+\dfrac{16xy}{\left(x-y\right)^2}+2\)
\(VT=\dfrac{x^2+y^2-2xy+2xy}{xy}+\dfrac{16xy}{\left(x-y\right)^2}+2\)
\(VT=\dfrac{\left(x-y\right)^2}{xy}+\dfrac{16xy}{\left(x-y\right)^2}+4\ge2\sqrt{\dfrac{16xy\left(x-y\right)^2}{xy\left(x-y\right)^2}}+4=12\)
1.Cho a, b, c là các số không âm.
Chứng minh rằng:
\(a+b+c=\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\)
\(< =>a=b=c\)
2. cho a,b,c không âm
Cmr: \(a+b+c\ge\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\)
3. Cmr: với mọi số thực a, ta đều có:
\(\frac{a^2+2}{\sqrt{a^2+1}}\ge2\)
Dấu = xảy ra khi nào
Bài 111
Cho a,b,c là các số thực không âm thỏa mãn \(a+b+c=2\)
CMR: \(\frac{bc}{a^2+1}+\frac{ca}{b^2+1}+\frac{ab}{c^2+1}\le1\)
cho a,b,c là các số thực không âm có tổng bằng 1.CMR
a(b-c)2+b(c-a)2+c(a-b)2 bé hơn hoặc bằng 1/4
Bài 1: Cho 2 số a,b,c không âm có tổng bằng 1.
CMR: 4.(1-a).(1-b).(1-c) \(\le a+2b+c\)
Bài 2: Với a,b,c là các số thực dương . CMR:
\(\frac{a^5}{a^2+ab+b^2}+\frac{b^5}{b^2+bc+c^2}+\frac{c^5}{c^2+ac+a^2}\)\(\ge\frac{a^3+b^3+c^3}{3}\)
Ai có lòng giúp với!!!
Bài 1. Từ giả thiết suy ra 1-a = b+c và áp dụng \(\left(x+y\right)^2\ge4xy\)
Ta có : \(4\left(1-a\right)\left(1-b\right)\left(1-c\right)=4\left(b+c\right)\left(1-c\right)\left(1-b\right)\le\left[\left(b+c\right)+\left(1-c\right)\right]^2\left(1-b\right)\)
\(=\left(b+1\right)^2\left(1-b\right)=\left(b+1\right)\left(1-b^2\right)=-b^2\left(b+1\right)+\left(b+1\right)\le b+1=a+2b+c\)
a. tìm các nghiệm nguyên của phương trình \(x^2+xy+y^2=x^2y^2\)
b. cho a,b,c là các số thực không âm thảo mãn : a+b+c=1
cmr: \(\frac{ab}{c+1}+\frac{bc}{a+1}+\frac{ca}{b+1}\le\frac{1}{4}\)
b)
\(\dfrac{ab}{c+1}+\dfrac{bc}{a+1}+\dfrac{ca}{b+1}\le\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{ab}{a+b+2c}+\dfrac{bc}{2a+b+c}+\dfrac{ca}{a+2b+c}\le\dfrac{1}{4}\)
Áp dụng bất đẳng thức \(\dfrac{1}{a+b}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\forall a,b>0\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{ab}{a+b+2c}=\dfrac{ab}{a+c+b+c}\le\dfrac{ab}{4}\left(\dfrac{1}{a+c}+\dfrac{1}{b+c}\right)\\\dfrac{bc}{2a+b+c}=\dfrac{bc}{a+b+a+c}\le\dfrac{bc}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)\\\dfrac{ca}{a+2b+c}=\dfrac{ca}{a+b+b+c}\le\dfrac{ca}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}\right)\end{matrix}\right.\)
\(\Rightarrow VT\le\dfrac{ab}{4}\left(\dfrac{1}{a+c}+\dfrac{1}{b+c}\right)+\dfrac{bc}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)+\dfrac{ca}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}\right)\)
\(\Rightarrow VT\le\dfrac{ab}{4\left(a+c\right)}+\dfrac{ab}{4\left(b+c\right)}+\dfrac{bc}{4\left(a+b\right)}+\dfrac{bc}{4\left(a+c\right)}+\dfrac{ca}{4\left(a+b\right)}+\dfrac{ca}{4\left(b+c\right)}\)
\(\Rightarrow VT\le\left[\dfrac{ab}{4\left(a+c\right)}+\dfrac{bc}{4\left(a+c\right)}\right]+\left[\dfrac{bc}{4\left(a+b\right)}+\dfrac{ca}{4\left(a+b\right)}\right]+\left[\dfrac{ca}{4\left(b+c\right)}+\dfrac{ab}{4\left(b+c\right)}\right]\)
\(\Rightarrow VT\le\dfrac{ab+bc}{4\left(a+c\right)}+\dfrac{bc+ca}{4\left(a+b\right)}+\dfrac{ca+ab}{4\left(b+c\right)}\)
\(\Rightarrow VT\le\dfrac{b\left(a+c\right)}{4\left(a+c\right)}+\dfrac{c\left(a+b\right)}{4\left(a+b\right)}+\dfrac{a\left(b+c\right)}{4\left(b+c\right)}\)
\(\Rightarrow VT\le\dfrac{a+b+c}{4}\)
\(\Rightarrow VT\le\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{ab}{c+1}+\dfrac{bc}{a+1}+\dfrac{ca}{b+1}\le\dfrac{1}{4}\) ( đpcm )
Dấu " = " xảy ra khi \(a=b=c=\dfrac{1}{3}\)